From 4e9698510438f35922171fb5f46575770c5af849 Mon Sep 17 00:00:00 2001 From: MitchellHansen Date: Mon, 5 Sep 2016 15:35:46 -0700 Subject: [PATCH] added lighting, stole a terrain generator and ported it. --- include/Map.h | 224 ++++++++++++++++++++++++++++++++++++-- kernels/minimal_kernel.cl | 71 ++++++------ src/main.cpp | 33 ++++-- 3 files changed, 269 insertions(+), 59 deletions(-) diff --git a/include/Map.h b/include/Map.h index 708d9bf..14491b8 100644 --- a/include/Map.h +++ b/include/Map.h @@ -3,26 +3,160 @@ #include #include #include +#include +#include +#include class Map { public: Map(sf::Vector3i dim) { + dimensions = dim; + std::mt19937 gen; + std::uniform_real_distribution dis(-1.0, 1.0); + auto f_rand = std::bind(dis, gen); + + list = new char[dim.x * dim.y * dim.z]; - //for (int i = 0; i < dim.x * dim.y * dim.x; i++) { - // list[i] = 0; + + height_map = new double[dim.x * dim.y]; + + for (int i = 0; i < dim.x * dim.y; i++) { + height_map[i] = 0; + } + + //int featuresize = 2; + + //for (int y = 0; y < dim.y; y += featuresize) + // for (int x = 0; x < dim.x; x += featuresize) { + // double t = dis(gen); + // setSample(x, y, t); //IMPORTANT: frand() is a random function that returns a value between -1 and 1. + // } + + //int samplesize = featuresize; + + //double scale = 10.0; + + //while (samplesize > 1) { + + // DiamondSquare(samplesize, scale); + + // samplesize /= 2; + // scale /= 2.0; //} - for (int x = 0; x < dim.x / 10; x++) { - for (int y = 0; y < dim.y / 10; y++) { - for (int z = 0; z < dim.z; z++) { - if (rand() % 1000 < 1) - list[x + dim.x * (y + dim.z * z)] = rand() % 6; - } - } - } - dimensions = dim; - global_light = sf::Vector3f(0.2, 0.4, 1); + + + //size of grid to generate, note this must be a + //value 2^n+1 + int DATA_SIZE = dim.x + 1; + //an initial seed value for the corners of the data + double SEED = 50; + + //seed the data + setSample(0, 0, SEED); + setSample(0, dim.y, SEED); + setSample(dim.x, 0, SEED); + setSample(dim.x, dim.y, SEED); + + double h = 30.0;//the range (-h -> +h) for the average offset + //for the new value in range of h + //side length is distance of a single square side + //or distance of diagonal in diamond + for (int sideLength = DATA_SIZE - 1; + //side length must be >= 2 so we always have + //a new value (if its 1 we overwrite existing values + //on the last iteration) + sideLength >= 2; + //each iteration we are looking at smaller squares + //diamonds, and we decrease the variation of the offset + sideLength /= 2, h /= 2.0) { + //half the length of the side of a square + //or distance from diamond center to one corner + //(just to make calcs below a little clearer) + int halfSide = sideLength / 2; + + //generate the new square values + for (int x = 0; x < DATA_SIZE - 1; x += sideLength) { + for (int y = 0; y < DATA_SIZE - 1; y += sideLength) { + //x, y is upper left corner of square + //calculate average of existing corners + double avg = sample(x, y) + //top left + sample(x + sideLength,y) +//top right + sample(x,y + sideLength) + //lower left + sample(x + sideLength,y + sideLength);//lower right + avg /= 4.0; + + //center is average plus random offset + setSample(x + halfSide,y + halfSide, + //We calculate random value in range of 2h + //and then subtract h so the end value is + //in the range (-h, +h) + avg + (f_rand() * 2 * h) - h); + } + } + + //generate the diamond values + //since the diamonds are staggered we only move x + //by half side + //NOTE: if the data shouldn't wrap then x < DATA_SIZE + //to generate the far edge values + for (int x = 0; x < DATA_SIZE - 1; x += halfSide) { + //and y is x offset by half a side, but moved by + //the full side length + //NOTE: if the data shouldn't wrap then y < DATA_SIZE + //to generate the far edge values + for (int y = (x + halfSide) % sideLength; y < DATA_SIZE - 1; y += sideLength) { + //x, y is center of diamond + //note we must use mod and add DATA_SIZE for subtraction + //so that we can wrap around the array to find the corners + double avg = + sample((x - halfSide + DATA_SIZE) % DATA_SIZE,y) + //left of center + sample((x + halfSide) % DATA_SIZE,y) + //right of center + sample(x,(y + halfSide) % DATA_SIZE) + //below center + sample(x,(y - halfSide + DATA_SIZE) % DATA_SIZE); //above center + avg /= 4.0; + + //new value = average plus random offset + //We calculate random value in range of 2h + //and then subtract h so the end value is + //in the range (-h, +h) + avg = avg + (f_rand() * 2 * h) - h; + //update value for center of diamond + setSample(x,y, avg); + + //wrap values on the edges, remove + //this and adjust loop condition above + //for non-wrapping values. + if (x == 0) setSample(DATA_SIZE - 1,y, avg); + if (y == 0) setSample(x, DATA_SIZE - 1, avg); + } + } + } + + + for (int x = 0; x < dim.x; x++) { + for (int y = 0; y < dim.y; y++) { + + if (height_map[x + y * dim.x] > 0) { + int z = height_map[x + y * dim.x]; + list[x + dim.x * (y + dim.z * z)] = 5; + } + + } + } + + + // for (int x = 0; x < dim.x / 10; x++) { + // for (int y = 0; y < dim.y / 10; y++) { + // for (int z = 0; z < dim.z; z++) { + // if (rand() % 1000 < 1) + // list[x + dim.x * (y + dim.z * z)] = rand() % 6; + // } + // } + // } + + } ~Map() { @@ -44,7 +178,73 @@ public: protected: private: + double* height_map; + + double sample(int x, int y) { + return height_map[(x & (dimensions.x - 1)) + (y & (dimensions.y - 1)) * dimensions.x]; + } + + void setSample(int x, int y, double value) { + height_map[(x & (dimensions.x - 1)) + (y & (dimensions.y - 1)) * dimensions.x] = value; + } + + void sampleSquare(int x, int y, int size, double value) { + int hs = size / 2; + + // a b + // + // x + // + // c d + + double a = sample(x - hs, y - hs); + double b = sample(x + hs, y - hs); + double c = sample(x - hs, y + hs); + double d = sample(x + hs, y + hs); + + setSample(x, y, ((a + b + c + d) / 4.0) + value); + + } + + void sampleDiamond(int x, int y, int size, double value) { + int hs = size / 2; + + // c + // + //a x b + // + // d + + double a = sample(x - hs, y); + double b = sample(x + hs, y); + double c = sample(x, y - hs); + double d = sample(x, y + hs); + + setSample(x, y, ((a + b + c + d) / 4.0) + value); + } + void DiamondSquare(int stepsize, double scale) { + + std::mt19937 generator; + std::uniform_real_distribution uniform_distribution(-1.0, 1.0); + auto f_rand = std::bind(uniform_distribution, std::ref(generator)); + + int halfstep = stepsize / 2; + + for (int y = halfstep; y < dimensions.y + halfstep; y += stepsize) { + for (int x = halfstep; x < dimensions.x + halfstep; x += stepsize) { + sampleSquare(x, y, stepsize, f_rand() * scale); + } + } + + for (int y = 0; y < dimensions.y; y += stepsize) { + for (int x = 0; x < dimensions.x; x += stepsize) { + sampleDiamond(x + halfstep, y, stepsize, f_rand() * scale); + sampleDiamond(x, y + halfstep, stepsize, f_rand() * scale); + } + } + + } }; diff --git a/kernels/minimal_kernel.cl b/kernels/minimal_kernel.cl index c07a596..565df95 100644 --- a/kernels/minimal_kernel.cl +++ b/kernels/minimal_kernel.cl @@ -1,3 +1,18 @@ + + +float4 white_light(float4 input, float3 light, int3 mask) { + + input.w = input.w + acos( + dot( + normalize(light), + normalize(fabs(convert_float3(mask))) + ) + ) / 2; + + return input; + +} + __kernel void min_kern( global char* map, global int3* map_dim, @@ -5,6 +20,8 @@ __kernel void min_kern( global float3* projection_matrix, global float3* cam_dir, global float3* cam_pos, + global float* lights, + global int* light_count, __write_only image2d_t image ){ @@ -26,43 +43,30 @@ __kernel void min_kern( // Setup the voxel step based on what direction the ray is pointing int3 voxel_step = {1, 1, 1}; - voxel_step.x *= (ray_dir.x > 0) - (ray_dir.x < 0); + voxel_step *= (ray_dir > 0) - (ray_dir < 0); + + /*voxel_step.x *= (ray_dir.x > 0) - (ray_dir.x < 0); voxel_step.y *= (ray_dir.y > 0) - (ray_dir.y < 0); - voxel_step.z *= (ray_dir.z > 0) - (ray_dir.z < 0); + voxel_step.z *= (ray_dir.z > 0) - (ray_dir.z < 0);*/ // Setup the voxel coords from the camera origin - int3 voxel = { - floor(cam_pos->x), - floor(cam_pos->y), - floor(cam_pos->z) - }; + int3 voxel = convert_int3(*cam_pos); // Delta T is the units a ray must travel along an axis in order to // traverse an integer split - float3 delta_t = { - fabs(1.0f / ray_dir.x), - fabs(1.0f / ray_dir.y), - fabs(1.0f / ray_dir.z) - }; + float3 delta_t = fabs(1.0f / ray_dir); // Intersection T is the collection of the next intersection points // for all 3 axis XYZ. - float3 intersection_t = { - delta_t.x, - delta_t.y, - delta_t.z - }; + float3 intersection_t = delta_t; - int2 randoms = { 3, 7 }; + int2 randoms = { 3, 14 }; uint seed = randoms.x + id; uint t = seed ^ (seed << 11); uint result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8)); int max_dist = 500 + result % 50; - int dist = 0; - int face = -1; - // X:0, Y:1, Z:2 - + int dist = 0; int3 mask = { 0, 0, 0 }; @@ -74,20 +78,16 @@ __kernel void min_kern( intersection_t += delta_t * fabs(convert_float3(mask.xyz)); voxel.xyz += voxel_step.xyz * mask.xyz; - - // If the ray went out of bounds - int3 overshoot = voxel.xyz <= map_dim->xyz; + int3 overshoot = voxel <= *map_dim; int3 undershoot = voxel > 0; - - - if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0){ - write_imagef(image, pixel, (float4)(.50 * abs(overshoot.x), .50 * abs(overshoot.y), .50 * abs(overshoot.z), 1)); + if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0){ + write_imagef(image, pixel, (float4)(.73, .81, .89, 1.0)); return; } - if (undershoot.x == 0 || undershoot.y == 0 || undershoot.z == 0) { - write_imagef(image, pixel, (float4)(.1 * abs(undershoot.x), .80 * abs(undershoot.y), .20 * abs(undershoot.z), 1)); + if (undershoot.z == 0) { + write_imagef(image, pixel, (float4)(.14, .30, .50, 1.0)); return; } @@ -95,8 +95,6 @@ __kernel void min_kern( int index = voxel.x + map_dim->x * (voxel.y + map_dim->z * voxel.z); int voxel_data = map[index]; - - if (voxel_data != 0) { switch (voxel_data) { case 1: @@ -104,8 +102,6 @@ __kernel void min_kern( return; case 2: write_imagef(image, pixel, (float4)(.00, .50, .40, 1.00)); - //if (id == 249000) - // printf("%i\n", voxel_data); return; case 3: write_imagef(image, pixel, (float4)(.00, .00, .50, 1.00)); @@ -114,7 +110,8 @@ __kernel void min_kern( write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00)); return; case 5: - write_imagef(image, pixel, (float4)(.10, .30, .80, 1.00)); + //write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00)); + write_imagef(image, pixel, white_light((float4)(.25, .32, .14, 0.2), (float3)(lights[7], lights[8], lights[9]), mask)); return; case 6: write_imagef(image, pixel, (float4)(.30, .80, .10, 1.00)); @@ -125,6 +122,6 @@ __kernel void min_kern( dist++; } while (dist < max_dist); - write_imagef(image, pixel, (float4)(.00, .00, .00, .00)); + write_imagef(image, pixel, (float4)(.73, .81, .89, 1.0)); return; } \ No newline at end of file diff --git a/src/main.cpp b/src/main.cpp index 3544600..8e89114 100644 --- a/src/main.cpp +++ b/src/main.cpp @@ -35,9 +35,9 @@ const int WINDOW_X = 1000; const int WINDOW_Y = 1000; -const int MAP_X = 1000; -const int MAP_Y = 1000; -const int MAP_Z = 1000; +const int MAP_X = 1024; +const int MAP_Y = 1024; +const int MAP_Z = 256; float elap_time(){ static std::chrono::time_point start; @@ -157,11 +157,26 @@ int main() { sf::Vector3f cam_pos(55, 50, 50); + cl_mem cam_pos_buff = clCreateBuffer( c.getContext(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, sizeof(float) * 4, &cam_pos, NULL ); + // {r, g, b, i, x, y, z, x', y', z'} + float light[] = { 0.4, 0.8, 0.1, 1, 50, 50, 50, 1.1, 0.4, 0.7}; + + cl_mem light_buff = clCreateBuffer( + c.getContext(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, + sizeof(float) * 10, light, NULL + ); + + int light_count = 1; + + cl_mem light_cnt_buff = clCreateBuffer( + c.getContext(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, + sizeof(int), &light_count, NULL + ); unsigned char* pixel_array = new sf::Uint8[WINDOW_X * WINDOW_Y * 4]; @@ -186,16 +201,14 @@ int main() { if (c.assert(error, "clCreateFromGLTexture")) return -1; - - - - c.store_buffer(map_buff, "map_buffer"); c.store_buffer(dim_buff, "dim_buffer"); c.store_buffer(res_buff, "res_buffer"); c.store_buffer(view_matrix_buff, "view_matrix_buffer"); c.store_buffer(cam_dir_buff, "cam_dir_buffer"); c.store_buffer(cam_pos_buff, "cam_pos_buffer"); + c.store_buffer(light_buff, "light_buffer"); + c.store_buffer(light_cnt_buff, "light_count_buffer"); c.store_buffer(image_buff, "image_buffer"); c.set_kernel_arg("min_kern", 0, "map_buffer"); @@ -204,12 +217,12 @@ int main() { c.set_kernel_arg("min_kern", 3, "view_matrix_buffer"); c.set_kernel_arg("min_kern", 4, "cam_dir_buffer"); c.set_kernel_arg("min_kern", 5, "cam_pos_buffer"); - c.set_kernel_arg("min_kern", 6, "image_buffer"); + c.set_kernel_arg("min_kern", 6, "light_buffer"); + c.set_kernel_arg("min_kern", 7, "light_count_buffer"); + c.set_kernel_arg("min_kern", 8, "image_buffer"); const int size = WINDOW_X * WINDOW_Y; - - s.setTexture(t); // The step size in milliseconds between calls to Update()