Various tweaks and modifications

Some preliminary testing of map
master
MitchellHansen 8 years ago
parent c98adefa3a
commit 51a08fc0bb

@ -22,6 +22,10 @@ message(STATUS "OpenCL found: ${OPENCL_FOUND}")
find_package(GLEW REQUIRED)
message(STATUS "GLEW found: ${GLEW_FOUND}")
# Find Vulkan
#find_package(VULKAN REQUIRED)
#message(STATUS "VULKAN found: ${VULKAN_FOUND}")
# Find OpenGL
find_package( OpenGL REQUIRED)
message(STATUS "OpenGL found: ${OPENGL_FOUND}")
@ -30,6 +34,7 @@ message(STATUS "OpenGL found: ${OPENGL_FOUND}")
include_directories(${SFML_INCLUDE_DIR})
include_directories(${OpenCL_INCLUDE_DIRS})
include_directories(${OpenGL_INCLUDE_DIRS})
#include_directories(${Vulkan_INCLUDE_DIRS})
include_directories(include)
# Glob all thr sources into their values
@ -53,6 +58,7 @@ target_link_libraries (${PNAME} ${SFML_LIBRARIES} ${SFML_DEPENDENCIES})
target_link_libraries (${PNAME} ${OpenCL_LIBRARY})
target_link_libraries (${PNAME} ${OPENGL_LIBRARIES})
target_link_libraries (${PNAME} ${GLEW_LIBRARIES})
#target_link_libraries (${PNAME} ${Vulkan_LIBRARIES})
# Setup to use C++11
set_property(TARGET ${PNAME} PROPERTY CXX_STANDARD 11) # Use C++11

@ -16,6 +16,7 @@
#include <math.h>
#define CHUNK_DIM 32
#define OCT_DIM 64
struct KeyHasher {
std::size_t operator()(const sf::Vector3i& k) const {
@ -57,6 +58,15 @@ protected:
private:
int64_t generate_children(sf::Vector3i pos, int dim);
int64_t block[1024];
int stack_position = 0;
char getVoxel(sf::Vector3i pos);
char* voxel_data = new char[OCT_DIM * OCT_DIM * OCT_DIM];
std::unordered_map<sf::Vector3i, Chunk, KeyHasher> chunk_map;
double* height_map;

@ -75,6 +75,17 @@ float4 cast_light_rays(
// if it does
}
int rand(int* seed) // 1 <= *seed < m
{
int const a = 16807; //ie 7**5
int const m = 2147483647; //ie 2**31-1
*seed = ((*seed) * a) % m;
return(*seed);
}
__kernel void raycaster(
global char* map,
global int3* map_dim,
@ -85,9 +96,17 @@ __kernel void raycaster(
global float* lights,
global int* light_count,
__write_only image2d_t image,
global int* seed
global int* seed_memory
){
int global_id = get_global_id(1) * get_global_size(0) + get_global_id(0);
int seed = seed_memory[global_id];
int random_number = rand(&seed);
seed_memory[global_id] = seed;
size_t id = get_global_id(0);
int2 pixel = {id % (*resolution).x, id / (*resolution).x};
float3 ray_dir = projection_matrix[pixel.x + (*resolution).x * pixel.y];
@ -139,19 +158,18 @@ __kernel void raycaster(
}
// use a ghetto ass rng to give rays a "fog" appearance
int2 randoms = { seed, ray_dir.y };
int2 randoms = { random_number, 14 };
uint tseed = randoms.x + id;
uint t = tseed ^ (tseed << 11);
uint result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8));
*seed = result % 50;
int max_dist = 800 + result % 100;
int dist = 0;
int3 mask = { 0, 0, 0 };
float4 color = { 0.73, 0.81, 0.89, 0.6 };
float4 c = (float4)(0.40, 0.00, 0.40, 0.2);
c.x += ray_dir.y;// (result % 100) / 100;
float4 c = (float4)(0.60, 0.00, 0.40, 0.1);
c.x += (result % 100) / 10;
// Andrew Woo's raycasting algo
do {

@ -8,7 +8,6 @@ OpenCL:
- Separate out into a part of the rendering module
Map:
- Reimplement the old map, put it into an old_map structure
- Implement the new octree structure
- storing the pre-octree volumetric data
- determining when to load volumetric data into the in-memory structure
@ -28,5 +27,15 @@ Renderer:
Build:
Z:\Cpp_Libs\SFML-Visual_Studio2015RCx64
Z:/Cpp_Libs/glew-2.0.0/lib/Release/x64/glew32s.lib
Z:/Cpp_Libs/glew-2.0.0/include
*/

@ -71,11 +71,11 @@ int Camera::update(double delta_time) {
// have to do it component wise
double multiplier = 40;
position.x += movement.x * delta_time * multiplier;
position.y += movement.y * delta_time * multiplier;
position.z += movement.z * delta_time * multiplier;
position.x += static_cast<float>(movement.x * delta_time * multiplier);
position.y += static_cast<float>(movement.y * delta_time * multiplier);
position.z += static_cast<float>(movement.z * delta_time * multiplier);
movement *= (float)(friction_coefficient * delta_time * multiplier);
movement *= static_cast<float>(friction_coefficient * delta_time * multiplier);
return 1;
}

@ -4,10 +4,10 @@ GL_Testing::GL_Testing() {
GLfloat tmp[] = {
1, 0, 0, 0,
0, cos(1), sin(1), 0,
0, -sin(1), cos(1), 0,
0, 0, 0, 1
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, static_cast<float>(cos(1.0f)), static_cast<float>(sin(1.0f)), 0.0f,
0.0f, static_cast<float>(-sin(1.0f)), static_cast<float>(cos(1.0f)), 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
};
@ -132,10 +132,10 @@ void GL_Testing::rotate(double delta) {
GLfloat tmp[] = {
1, 0, 0, 0,
0, cos(counter), sin(counter), 0,
0, -sin(counter), cos(counter), 0,
0, 0, 0, 1
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, static_cast<float>(cos(counter)), static_cast<float>(sin(counter)), 0.0f,
0.0f, static_cast<float>(-sin(counter)), static_cast<float>(cos(counter)), 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
};

@ -37,9 +37,10 @@ int Hardware_Caster::init() {
}
srand(NULL);
int seed = rand();
create_buffer("seed", sizeof(int), &seed);
int *seed_memory = new int[1920*1080];
create_buffer("seed", sizeof(int) * 1920 * 1080, seed_memory);
return 1;
@ -87,7 +88,7 @@ void Hardware_Caster::validate()
set_kernel_arg("raycaster", 8, "image");
set_kernel_arg("raycaster", 9, "seed");
print_kernel_arguments();
//print_kernel_arguments();
}
@ -180,7 +181,7 @@ void Hardware_Caster::assign_lights(std::vector<Light> lights) {
this->lights = std::vector<Light>(lights);
light_count = lights.size();
light_count = static_cast<int>(lights.size());
create_buffer("lights", sizeof(float) * 10 * light_count, this->lights.data(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR);
@ -229,7 +230,7 @@ int Hardware_Caster::acquire_platform_and_device() {
if (assert(error, "clGetDeviceIDs"))
return OPENCL_ERROR;
for (int q = 0; q < deviceIdCount; q++) {
for (unsigned int q = 0; q < deviceIdCount; q++) {
device d;

@ -1,8 +1,63 @@
#include "Map.h"
// root
//
// a1
// a2
//
// b1
// b1
//
// c1
// c1
//
// a2
// a2
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
Map::Map(sf::Vector3i position) {
load_unload(position);
for (int i = 0; i < 8192; i++) {
block[i] = 0;
}
}
int BitCount(unsigned int u) {
@ -12,6 +67,30 @@ int BitCount(unsigned int u) {
return ((uCount + (uCount >> 3)) & 030707070707) % 63;
}
void SetBit(int position, char* c) {
*c |= 1 << position;
}
void FlipBit(int position, char* c) {
*c ^= 1 << position;
}
int GetBit(int position, char* c) {
return (*c >> position) & 1;
}
void SetBit(int position, int64_t* c) {
*c |= 1 << position;
}
void FlipBit(int position, int64_t* c) {
*c ^= 1 << position;
}
int GetBit(int position, int64_t* c) {
return (*c >> position) & 1;
}
struct leaf {
leaf *children;
char leaf_mask;
@ -24,6 +103,103 @@ struct block {
double* data = new double[1000];
};
int64_t generate_children_at_raw() {
int64_t t;
// count the raw data and insert via bit masks or whatever into the valid field
// Set the child pointer blank and the leaf mask blank as well
// Return the single value
return t;
}
int64_t Map::generate_children(sf::Vector3i pos, int dim) {
sf::Vector3i t1 = sf::Vector3i(pos.x, pos.y, pos.z);
sf::Vector3i t2 = sf::Vector3i(pos.x + dim, pos.y, pos.z);
sf::Vector3i t3 = sf::Vector3i(pos.x, pos.y + dim, pos.z);
sf::Vector3i t4 = sf::Vector3i(pos.x + dim, pos.y + dim, pos.z);
sf::Vector3i t5 = sf::Vector3i(pos.x, pos.y, pos.z + dim);
sf::Vector3i t6 = sf::Vector3i(pos.x + dim, pos.y, pos.z + dim);
sf::Vector3i t7 = sf::Vector3i(pos.x, pos.y + dim, pos.z + dim);
sf::Vector3i t8 = sf::Vector3i(pos.x + dim, pos.y + dim, pos.z + dim);
std::vector<int64_t> cps;
int64_t tmp = 0;
if (dim == 1) {
if (getVoxel(t1))
SetBit(16, &tmp);
if (getVoxel(t2))
SetBit(16, &tmp);
if (getVoxel(t3))
SetBit(16, &tmp);
if (getVoxel(t4))
SetBit(16, &tmp);
if (getVoxel(t5))
SetBit(16, &tmp);
if (getVoxel(t6))
SetBit(16, &tmp);
if (getVoxel(t7))
SetBit(16, &tmp);
if (getVoxel(t8))
SetBit(16, &tmp);
cps.push_back(tmp);
}
else {
// Generate all 8 sub trees accounting for each of their unique positions
int curr_stack_pos = stack_position;
tmp = generate_children(t1, dim / 2);
if (tmp != 0)
cps.push_back(tmp);
tmp = generate_children(t2, dim / 2);
if (tmp != 0)
cps.push_back(tmp);
tmp = generate_children(t3, dim / 2);
if (tmp != 0)
cps.push_back(tmp);
tmp = generate_children(t4, dim / 2);
if (tmp != 0)
cps.push_back(tmp);
tmp = generate_children(t5, dim / 2);
if (tmp != 0)
cps.push_back(tmp);
tmp = generate_children(t6, dim / 2);
if (tmp != 0)
cps.push_back(tmp);
tmp = generate_children(t7, dim / 2);
if (tmp != 0)
cps.push_back(tmp);
tmp = generate_children(t8, dim / 2);
if (tmp != 0)
cps.push_back(tmp);
}
memcpy(&block[stack_position], cps.data(), cps.size() * sizeof(int64_t));
stack_position += cps.size();
return 0;
}
void Map::generate_octree() {
@ -34,19 +210,40 @@ void Map::generate_octree() {
int* dataset = new int[32 * 32 * 32];
for (int i = 0; i < 32 * 32 * 32; i++) {
dataset[0] = i;
dataset[0] = rand() % 2;
}
int level = static_cast<int>(log2(32));
// levels defines how many levels to traverse before we hit raw data
// Will be the map width I presume. Will still need to handle how to swap in and out data.
// Possible have some upper static nodes that will stay full regardless of contents?
int levels = static_cast<int>(log2(64));
leaf top_node;
top_node.level = level;
for (int i = 0; i < 16 * 16 * 16; i++) {
for (int i = 0; i < 8 * 8 * 8; i++) {
for (int i = 0; i < 4 * 4 * 4; i++) {
int t_level = -1;
int b_level = 0;
for (int i1 = 0; i1 < 2 * 2 * 2; i1++) {
int b_level = 1;
for (int i2 = 0; i2 < 2 * 2 * 2; i2++) {
int b_level = 2;
for (int i3 = 0; i3 < 2 * 2 * 2; i3++) {
int b_level = 3;
leaf l1;
l1.children = nullptr;
l1.leaf_mask = 0;
l1.valid_mask = 0;
for (int i = 0; i < 2 * 2 * 2; i++) {
//int x =
//if (dataset[]
}
}
}
@ -127,6 +324,11 @@ void Map::setVoxel(sf::Vector3i world_position, int val) {
}
char Map::getVoxel(sf::Vector3i pos){
return voxel_data[pos.x + OCT_DIM * (pos.y + OCT_DIM * pos.z)];
}
void Chunk::set(int type) {
for (int i = 0; i < CHUNK_DIM * CHUNK_DIM * CHUNK_DIM; i++) {
voxel_data[i] = 0;

@ -136,14 +136,14 @@ void Old_Map::generate_terrain() {
}
for (int x = 0; x < dimensions.x / 10; x++) {
for (int y = 0; y < dimensions.y / 10; y++) {
for (int z = 0; z < dimensions.z; z++) {
if (rand() % 1000 < 1)
voxel_data[x + dimensions.x * (y + dimensions.z * z)] = rand() % 6;
}
}
}
//for (int x = 0; x < dimensions.x / 10; x++) {
// for (int y = 0; y < dimensions.y / 10; y++) {
// for (int z = 0; z < dimensions.z; z++) {
// if (rand() % 1000 < 1)
// voxel_data[x + dimensions.x * (y + dimensions.z * z)] = rand() % 6;
// }
// }
//}
}

@ -130,20 +130,12 @@ sf::Color Ray::Cast() {
alpha *= 162;
switch (voxel_data) {
case 1:
// AngleBew0 - 1.57 * 162 = 0 - 255
return sf::Color(255, 0, 0, alpha);
case 2:
return sf::Color(255, 10, 0, alpha);
case 3:
return sf::Color(255, 0, 255, alpha);
case 4:
return sf::Color(80, 0, 150, alpha);
case 5:
return sf::Color(255, 120, 255, alpha);
case 6:
return sf::Color(150, 80, 220, alpha);
default:
return sf::Color(150, 80, 220, alpha);
}
dist++;

@ -1,5 +1,6 @@
#include "GL_Testing.h"
#include <vulkan/vulkan.h>
#include <vulkan/vk_sdk_platform.h>
#ifdef linux
#include <CL/cl.h>
#include <CL/opencl.h>
@ -66,6 +67,15 @@ sf::Texture window_texture;
int main() {
Map _map(sf::Vector3i(0, 0, 0));
_map.generate_octree();
glewInit();
sf::RenderWindow window(sf::VideoMode(WINDOW_X, WINDOW_Y), "SFML");
GL_Testing t;

Loading…
Cancel
Save