diff --git a/kernels/ray_caster_kernel.cl b/kernels/ray_caster_kernel.cl index 701e9ef..667ce3a 100644 --- a/kernels/ray_caster_kernel.cl +++ b/kernels/ray_caster_kernel.cl @@ -114,7 +114,7 @@ struct TraversalState { }; -bool get_oct_vox( +struct TraversalState get_oct_vox( int3 position, global ulong *octree_descriptor_buffer, global uint *octree_attachment_lookup_buffer, @@ -184,7 +184,8 @@ bool get_oct_vox( // If it is, then we cannot traverse further as CP's won't have been generated ts.found = true; - return ts.found; + return ts; + //return ts.found; } // If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy @@ -221,12 +222,14 @@ bool get_oct_vox( // Currently it adds the last parent on the second to lowest // oct CP. Not sure if thats correct ts.found = 0; - return ts.found; + return ts; + //return ts.found; } } ts.found = 1; - return ts.found; + return ts; + //return ts.found; } // ========================================================================= @@ -260,27 +263,27 @@ __kernel void raycaster( ray_dir.z * sin((*cam_dir).x) + ray_dir.x * cos((*cam_dir).x), ray_dir.y, ray_dir.z * cos((*cam_dir).x) - ray_dir.x * sin((*cam_dir).x) - ); + ); // Yaw ray_dir = (float3)( - ray_dir.x * cos((*cam_dir).y) - ray_dir.y * sin((*cam_dir).y), - ray_dir.x * sin((*cam_dir).y) + ray_dir.y * cos((*cam_dir).y), - ray_dir.z + ray_dir.x * cos((*cam_dir).y) - ray_dir.y * sin((*cam_dir).y), + ray_dir.x * sin((*cam_dir).y) + ray_dir.y * cos((*cam_dir).y), + ray_dir.z ); if (any(ray_dir == zeroed_float3)) return; // Setup the voxel step based on what direction the ray is pointing - int3 voxel_step = {1, 1, 1}; + int3 voxel_step = {1, 1, 1}; voxel_step *= (ray_dir > 0) - (ray_dir < 0); - // Setup the voxel coords from the camera origin + // Setup the voxel coords from the camera origin int3 voxel = convert_int3_rtn(*cam_pos); //voxel = voxel + convert_int3(*cam_pos < 0.0f); - // Delta T is the units a ray must travel along an axis in order to - // traverse an integer split + // Delta T is the units a ray must travel along an axis in order to + // traverse an integer split float3 delta_t = fabs(1.0f / ray_dir); // Intersection T is the collection of the next intersection points @@ -311,44 +314,236 @@ __kernel void raycaster( float fog_distance = 0.0f; bool shadow_ray = false; + int vox_dim = setting(OCTDIM); + + struct TraversalState traversal_state; + + traversal_state = get_oct_vox( + voxel, + octree_descriptor_buffer, + octree_attachment_lookup_buffer, + octree_attachment_buffer, + settings_buffer); + + int jump_power = (int)log2((float)vox_dim) - traversal_state.scale; + int prev_jump_power = jump_power; + + // TODO: DEBUG + int failsafe = 0; + // Andrew Woo's raycasting algo - while (distance_traveled < max_distance && bounce_count < 2) { - - // Fancy no branch version of the logic step - face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy); - intersection_t += delta_t * fabs(convert_float3(face_mask.xyz)); - voxel.xyz += voxel_step.xyz * face_mask.xyz; - - // Test for out of bounds contions, add fog - if (any(voxel >= *map_dim) || any(voxel < 0)){ - voxel.xyz -= voxel_step.xyz * face_mask.xyz; - color_accumulator = mix(fog_color, voxel_color, 1.0f - max(distance_traveled / 700.0f, 0.0f)); - color_accumulator.w *= 4; - break; - } - int vox_dim = setting(OCTDIM); - - // If we hit a voxel - - if (setting(OCTENABLED) == 1 && voxel.x < (*map_dim).x && voxel.y < (*map_dim).x && voxel.z < (*map_dim).x){ - if (get_oct_vox( - voxel, - octree_descriptor_buffer, - octree_attachment_lookup_buffer, - octree_attachment_buffer, - settings_buffer - )){ - voxel_data = 5; - } else { - voxel_data = 0; - } - } else { + while (distance_traveled < max_distance && bounce_count < 2) { + + + // If we hit a voxel + if (setting(OCTENABLED) == 0 && voxel.x < (*map_dim).x/2 && voxel.y < (*map_dim).x/2 && voxel.z < (*map_dim).x/2){ + //if (setting(OCTENABLED) == 0 && voxel.x < (*map_dim).x && voxel.y < (*map_dim).x && voxel.z < (*map_dim).x){ + // // traversal_state = get_oct_vox( + // // voxel, + // // octree_descriptor_buffer, + // // octree_attachment_lookup_buffer, + // // octree_attachment_buffer, + // // settings_buffer); + // if (traversal_state.found){ + // voxel_data = 5; + // } else { + // voxel_data = 0; + // } + // + + // Fancy no branch version of the logic step + face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy); + + + intersection_t += + delta_t * jump_power * fabs(convert_float3(face_mask.xyz)); + + + int3 other_faces = face_mask.xyz ? 0 : 1; + intersection_t += + delta_t * jump_power * fabs(convert_float3(other_faces.xyz)) + - delta_t * prev_jump_power * fabs(convert_float3(other_faces.xyz)); + + + voxel.xyz += voxel_step.xyz * jump_power * face_mask.xyz; + + // Test for out of bounds contions, add fog + if (any(voxel >= *map_dim) || any(voxel < 0)){ + voxel.xyz -= voxel_step.xyz * face_mask.xyz; + color_accumulator = mix(fog_color, voxel_color, 1.0f - max(distance_traveled / 700.0f, 0.0f)); + color_accumulator.w *= 4; + break; + } + + uchar prev_val = traversal_state.idx_stack[traversal_state.scale]; + uchar this_face_mask = 0; + // Check the voxel face that we traversed + // and increment the idx in the idx stack + if (face_mask.x) { + this_face_mask = idx_set_x_mask; + } + else if (face_mask.y) { + this_face_mask = idx_set_y_mask; + } + else if (face_mask.z) { + this_face_mask = idx_set_z_mask; + } + traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask; + + // Mask index is the 1D index'd value of the idx for interaction with the valid / leaf masks + uchar mask_index = traversal_state.idx_stack[traversal_state.scale]; + + // Whether or not the next oct we want to enter in the current CD's valid mask is 1 or 0 + bool is_valid = false; + + // TODO: Rework this logic so we don't have this bodgy if + if (mask_index > prev_val) + is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index]; + + // Check to see if the idx increased or decreased + // If it decreased + // Pop up the stack until the oct that the idx flip is valid and we landed on a valid oct + + failsafe = 0; + while (mask_index < prev_val || !is_valid) { + + jump_power *= 2; + + // Keep track of the 0th edge of our current oct + traversal_state.oct_pos.x = floor((float)(voxel.x / 2)) * jump_power; + traversal_state.oct_pos.y = floor((float)(voxel.y / 2)) * jump_power; + traversal_state.oct_pos.z = floor((float)(voxel.z / 2)) * jump_power; + + // Clear and pop the idx stack + traversal_state.idx_stack[traversal_state.scale] = 0; + + // Scale is now set to the oct above. Be wary of this + traversal_state.scale--; + + // Update the prev_val for our new idx + prev_val = traversal_state.idx_stack[traversal_state.scale]; + + // Clear and pop the parent stack, maybe off by one error? + traversal_state.parent_stack_index[traversal_state.parent_stack_position] = 0; + traversal_state.parent_stack[traversal_state.parent_stack_position] = 0; + traversal_state.parent_stack_position--; + + // Set the current CD to the one on top of the stack + traversal_state.current_descriptor = + traversal_state.parent_stack[traversal_state.parent_stack_position]; + + // Apply the face mask to the new idx for the while check + traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask; + + // Get the mask index of the new idx and check the valid status + mask_index = traversal_state.idx_stack[traversal_state.scale]; + is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index]; + + failsafe++; + if (failsafe > 10000) + break; + } + + // At this point parent_stack[position] is at the CD of an oct with a + // valid oct at the leaf indicated by the current idx in the idx stack scale + + failsafe = 0; + // While we haven't bottomed out and the oct we're looking at is valid + while (jump_power > 1 && is_valid) { + + // If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy + traversal_state.scale++; + jump_power /= 2; + + // Count the number of valid octs that come before and add it to the index to get the position + // Negate it by one as it counts itself + int count = popcount((uchar)(traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & count_mask_8[mask_index]) - 1; + + + //TODO: REWORK THIS IF STATEMENT, PERF KILLER + + // If this CD had the far bit set + if (far_bit_mask & octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]]) { + + // access the far point at which the head points too. Determine it's value, and add + // the count of the valid bits in the current CD to the index + uint far_pointer_index = + traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // current index + + (traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask); // the relative prt to the far ptr + + // Get the absolute ptr from the far ptr and add the count to get the CD that we want + traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] = octree_descriptor_buffer[far_pointer_index] + count; + } + // If this CD doesn't have the far bit set, access the element at which head points to + // and then add the specified number of indices to get to the correct child descriptor + else { + traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] = + traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // The current index to this CD + (traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask) + count; // The relative dist + the number of bits that were valid + } + + // Now that we have the index set we can increase our parent stack position to the next level and + // retrieve the value of its CD + traversal_state.parent_stack_position++; + traversal_state.parent_stack[traversal_state.parent_stack_position] = octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]]; + + // Unlike the single shot DFS, it makes a bit more sense to have this at the tail of the while loop + // Do the logic steps to find which sub oct we step down into + if (voxel.x >= (jump_power / 2) + traversal_state.oct_pos.x) { + + // Set our voxel position to the (0,0) of the correct oct + traversal_state.oct_pos.x += (jump_power / 2); + + // Set the idx to represent the move + traversal_state.idx_stack[traversal_state.scale] |= idx_set_x_mask; + + } + if (voxel.y >= (jump_power / 2) + traversal_state.oct_pos.y) { + + traversal_state.oct_pos.y += (jump_power / 2); + traversal_state.idx_stack[traversal_state.scale] |= idx_set_y_mask; + } + if (voxel.z >= (jump_power / 2) + traversal_state.oct_pos.z) { + + traversal_state.oct_pos.z += (jump_power / 2); + traversal_state.idx_stack[traversal_state.scale] |= idx_set_z_mask; + } + + // Update the mask index with the new voxel we walked down to, and then check it's valid status + mask_index = traversal_state.idx_stack[traversal_state.scale]; + is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index]; + + failsafe++; + if (failsafe > 100) + break; + } + + // // Test for out of bounds contions, add fog + // if (traversal_state.scale == 1){ + // //voxel.xyz -= voxel_step.xyz * face_mask.xyz; + // color_accumulator = mix((1.0f, 1.0f, 1.0f, 1.0f), (1.0f, 1.0f, 1.0f, 1.0f), 1.0f - max(distance_traveled / 700.0f, 0.0f)); + // color_accumulator.w *= 4; + // break; + // } + voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))]; + } else { + // Fancy no branch version of the logic step + face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy); + intersection_t += delta_t * fabs(convert_float3(face_mask.xyz)); + voxel.xyz += voxel_step.xyz * face_mask.xyz; + + // Test for out of bounds contions, add fog + if (any(voxel >= *map_dim) || any(voxel < 0)){ + voxel.xyz -= voxel_step.xyz * face_mask.xyz; + color_accumulator = mix(fog_color, voxel_color, 1.0f - max(distance_traveled / 700.0f, 0.0f)); + color_accumulator.w *= 4; + break; + } voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))]; } - if (voxel_data == 5 || voxel_data == 6) { // Determine where on the 2d plane the ray intersected face_position = zeroed_float3;