diff --git a/kernels/ray_caster_kernel.cl b/kernels/ray_caster_kernel.cl index 02579a6..c3eed71 100644 --- a/kernels/ray_caster_kernel.cl +++ b/kernels/ray_caster_kernel.cl @@ -1,3 +1,19 @@ +/* + +Notes: + +Keep this is mind when masking the voxel steps, pretty unintuitive behaviour + + For scalar types, the equality operators return 0 if false and return 1 if true + For vector types, the equality operators return 0 if false and return -1 if true (i.e. all bits set) + The equality equal (==) returns 0 if one or both arguments are not a number (NaN). + The equality not equal (!=) returns 1 (for scalar source operands) or -1 (for vector source + operands) if one or both arguments are not a number (NaN). + + if statements will take 0 as false and any other integer as true + + +*/ // ========================================================================= // ======================== INITIALIZER CONSTANTS ========================== @@ -128,8 +144,9 @@ struct TraversalState get_oct_vox( ts.current_descriptor_index = setting(OCTREE_ROOT_INDEX); ts.current_descriptor = octree_descriptor_buffer[ts.current_descriptor_index]; ts.scale = 0; + ts.parent_stack_position = 0; ts.found = false; - ts.parent_stack[ts.scale] = ts.current_descriptor; + ts.parent_stack[0] = ts.current_descriptor; // Set our initial dimension and the position at the corner of the oct to keep track of our position int dimension = setting(OCTDIM); @@ -190,6 +207,7 @@ struct TraversalState get_oct_vox( // If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy ts.scale++; + ts.parent_stack_position++; dimension /= 2; // Count the number of valid octs that come before and add it to the index to get the position @@ -210,8 +228,8 @@ struct TraversalState get_oct_vox( ts.current_descriptor = octree_descriptor_buffer[ts.current_descriptor_index]; - ts.parent_stack[ts.scale] = ts.current_descriptor; - + ts.parent_stack[ts.parent_stack_position] = ts.current_descriptor; + ts.parent_stack_index[ts.parent_stack_position] = ts.current_descriptor_index; } else { // If the oct was not valid, then no CP's exists any further @@ -271,14 +289,16 @@ __kernel void raycaster( ray_dir.x * sin((*cam_dir).y) + ray_dir.y * cos((*cam_dir).y), ray_dir.z ); + if (any(ray_dir == zeroed_float3)) return; // Setup the voxel step based on what direction the ray is pointing - int3 voxel_step = {1, 1, 1}; - voxel_step *= (ray_dir > 0) - (ray_dir < 0); + // Correct opencl for being stupid and giving us negative for true + int3 voxel_step = (-1, -1, -1) * ((ray_dir > 0) - (ray_dir < 0)); // Setup the voxel coords from the camera origin + // rtn = round towards negative int3 voxel = convert_int3_rtn(*cam_pos); //voxel = voxel + convert_int3(*cam_pos < 0.0f); @@ -287,12 +307,11 @@ __kernel void raycaster( float3 delta_t = fabs(1.0f / ray_dir); // Intersection T is the collection of the next intersection points - // for all 3 axis XYZ. We take the full positive cardinality when + // for all 3 axis XYZ. We take the full negative cardinality when // subtracting the floor, so we must transfer the sign over from // the voxel step - - float3 offset = delta_t * ((*cam_pos) - ceil(*cam_pos)); - float3 intersection_t = offset* convert_float3(voxel_step); + float3 offset = delta_t * (floor(*cam_pos) - (*cam_pos)); + float3 intersection_t = offset * convert_float3(voxel_step); // When we transfer the sign over, we get the correct direction of // the offset, but we merely transposed over the value instead of mirroring @@ -325,7 +344,7 @@ __kernel void raycaster( octree_attachment_buffer, settings_buffer); - int jump_power = (int)log2((float)vox_dim) - traversal_state.scale; + int jump_power = (int)pow((float)2, log2((float)vox_dim) - (float)traversal_state.scale); int prev_jump_power = jump_power; int3 last_oct_pos = (0); // TODO: DEBUG @@ -334,209 +353,210 @@ __kernel void raycaster( // Andrew Woo's raycasting algo while (distance_traveled < max_distance && bounce_count < 2) { - + if (jump_power == 2){ + color_accumulator = mix((1.0f, 1.0f, 1.0f, 1.0f), (1.0f, 1.0f, 1.0f, 1.0f), 1.0f - max(distance_traveled / 700.0f, 0.0f)); + color_accumulator.w *= 4; + break; + } // If we hit a voxel - if (setting(OCTENABLED) == 0 && voxel.x < (*map_dim).x/2 && voxel.y < (*map_dim).x/2 && voxel.z < (*map_dim).x/2){ - //if (setting(OCTENABLED) == 0 && voxel.x < (*map_dim).x && voxel.y < (*map_dim).x && voxel.z < (*map_dim).x){ - // // traversal_state = get_oct_vox( - // // voxel, - // // octree_descriptor_buffer, - // // octree_attachment_lookup_buffer, - // // octree_attachment_buffer, - // // settings_buffer); - // if (traversal_state.found){ - // voxel_data = 5; - // } else { - // voxel_data = 0; - // } - // - - // Fancy no branch version of the logic step - face_mask = 1 + (intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy)); - - prev_jump_power = jump_power; - - voxel.xyz += voxel_step.xyz * jump_power * face_mask.xyz; - - // Test for out of bounds contions, add fog - if (any(voxel >= *map_dim) || any(voxel < 0)){ - voxel.xyz -= voxel_step.xyz * face_mask.xyz; - color_accumulator = mix(fog_color, voxel_color, 1.0f - max(distance_traveled / 700.0f, 0.0f)); - color_accumulator.w *= 4; - break; - } + if (setting(OCTENABLED) == 0 && voxel.x < (*map_dim).x/2 && voxel.y < (*map_dim).x/2 && voxel.z < (*map_dim).x) { + traversal_state = get_oct_vox( + voxel, + octree_descriptor_buffer, + octree_attachment_lookup_buffer, + octree_attachment_buffer, + settings_buffer); + // True will result in a -1, e.g (0, 0, -1) so negate it to positive + face_mask = -1 * (intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy)); - uchar prev_val = traversal_state.idx_stack[traversal_state.scale]; - uchar this_face_mask = 0; - // Check the voxel face that we traversed - // and increment the idx in the idx stack - if (face_mask.x) { - this_face_mask = idx_set_x_mask; - } - else if (face_mask.y) { - this_face_mask = idx_set_y_mask; - } - else if (face_mask.z) { - this_face_mask = idx_set_z_mask; - } - traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask; + prev_jump_power = jump_power; - // Mask index is the 1D index'd value of the idx for interaction with the valid / leaf masks - uchar mask_index = traversal_state.idx_stack[traversal_state.scale]; + voxel.xyz += voxel_step.xyz * jump_power * face_mask.xyz; - // Whether or not the next oct we want to enter in the current CD's valid mask is 1 or 0 - bool is_valid = false; + // Test for out of bounds contions, add fog + if (any(voxel >= *map_dim) || any(voxel < 0)){ + voxel.xyz -= voxel_step.xyz * jump_power * face_mask.xyz; + color_accumulator = mix(fog_color, voxel_color, 1.0f - max(distance_traveled / 700.0f, 0.0f)); + color_accumulator.w *= 4; + break; + } - // TODO: Rework this logic so we don't have this bodgy if - if (mask_index > prev_val) - is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index]; + uchar prev_val = traversal_state.idx_stack[traversal_state.scale]; + uchar this_face_mask = 0; - // Check to see if the idx increased or decreased - // If it decreased - // Pop up the stack until the oct that the idx flip is valid and we landed on a valid oct + // Check the voxel face that we traversed + if (face_mask.x) { + this_face_mask = idx_set_x_mask; + } + else if (face_mask.y) { + this_face_mask = idx_set_y_mask; + } + else if (face_mask.z) { + this_face_mask = idx_set_z_mask; + } - failsafe = 0; - while (mask_index < prev_val || !is_valid) { + // and increment the idx in the idx stack + traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask; - jump_power *= 2; + // Mask index is the 1D index'd value of the idx for interaction with the valid / leaf masks + uchar mask_index = traversal_state.idx_stack[traversal_state.scale]; - // Keep track of the 0th edge of our current oct - traversal_state.oct_pos.x = floor((float)(voxel.x / 2)) * jump_power; - traversal_state.oct_pos.y = floor((float)(voxel.y / 2)) * jump_power; - traversal_state.oct_pos.z = floor((float)(voxel.z / 2)) * jump_power; + // Whether or not the next oct we want to enter in the current CD's valid mask is 1 or 0 + bool is_valid = false; - // Clear and pop the idx stack - traversal_state.idx_stack[traversal_state.scale] = 0; + // Check to see if the idx increased or decreased + // If it decreased, thus invalid + // Pop up the stack until the oct that the idx flip is valid and we landed on a valid oct + failsafe = 0; + if (mask_index > prev_val) // TODO: Rework this logic so we don't have this bodgy if + is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index]; - // Scale is now set to the oct above. Be wary of this - traversal_state.scale--; + while (mask_index < prev_val || !is_valid) { - // Update the prev_val for our new idx - prev_val = traversal_state.idx_stack[traversal_state.scale]; + jump_power *= 2; - // Clear and pop the parent stack, maybe off by one error? - traversal_state.parent_stack_index[traversal_state.parent_stack_position] = 0; - traversal_state.parent_stack[traversal_state.parent_stack_position] = 0; - traversal_state.parent_stack_position--; + // Keep track of the 0th edge of our current oct + traversal_state.oct_pos.x = floor((float)(voxel.x / 2)) * jump_power; + traversal_state.oct_pos.y = floor((float)(voxel.y / 2)) * jump_power; + traversal_state.oct_pos.z = floor((float)(voxel.z / 2)) * jump_power; - // Set the current CD to the one on top of the stack - traversal_state.current_descriptor = - traversal_state.parent_stack[traversal_state.parent_stack_position]; + // Clear and pop the idx stack + traversal_state.idx_stack[traversal_state.scale] = 0; - // Apply the face mask to the new idx for the while check - traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask; + // Scale is now set to the oct above. Be wary of this + traversal_state.scale--; - // Get the mask index of the new idx and check the valid status - mask_index = traversal_state.idx_stack[traversal_state.scale]; - is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index]; + // Update the prev_val for our new idx + prev_val = traversal_state.idx_stack[traversal_state.scale]; - failsafe++; - if (failsafe > 20) - break; - } + // Clear and pop the parent stack, maybe off by one error? + traversal_state.parent_stack_index[traversal_state.parent_stack_position] = 0; + traversal_state.parent_stack[traversal_state.parent_stack_position] = 0; + traversal_state.parent_stack_position--; - // At this point parent_stack[position] is at the CD of an oct with a - // valid oct at the leaf indicated by the current idx in the idx stack scale + // Set the current CD to the one on top of the stack + traversal_state.current_descriptor = + traversal_state.parent_stack[traversal_state.parent_stack_position]; - failsafe = 0; - // While we haven't bottomed out and the oct we're looking at is valid - while (jump_power > 1 && is_valid) { + // Apply the face mask to the new idx for the while check + traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask; - // If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy - traversal_state.scale++; - jump_power /= 2; + // Get the mask index of the new idx and check the valid status + mask_index = traversal_state.idx_stack[traversal_state.scale]; + is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index]; - // Count the number of valid octs that come before and add it to the index to get the position - // Negate it by one as it counts itself - int count = popcount((uchar)(traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & count_mask_8[mask_index]) - 1; + failsafe++; + if (failsafe > 50) + break; + } + // At this point parent_stack[position] is at the CD of an oct with a + // valid oct at the leaf indicated by the current idx in the idx stack scale - //TODO: REWORK THIS IF STATEMENT, PERF KILLER + failsafe = 0; + // While we haven't bottomed out and the oct we're looking at is valid + while (jump_power > 1 && is_valid) { - // If this CD had the far bit set - if (far_bit_mask & octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]]) { + // If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy + traversal_state.scale++; + jump_power /= 2; - // access the far point at which the head points too. Determine it's value, and add - // the count of the valid bits in the current CD to the index - uint far_pointer_index = - traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // current index + - (traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask); // the relative prt to the far ptr + // Count the number of valid octs that come before and add it to the index to get the position + // Negate it by one as it counts itself + int count = popcount((uchar)(traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & count_mask_8[mask_index]) - 1; - // Get the absolute ptr from the far ptr and add the count to get the CD that we want - traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] = octree_descriptor_buffer[far_pointer_index] + count; - } - // If this CD doesn't have the far bit set, access the element at which head points to - // and then add the specified number of indices to get to the correct child descriptor - else { - traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] = - traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // The current index to this CD - (traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask) + count; // The relative dist + the number of bits that were valid - } - // Now that we have the index set we can increase our parent stack position to the next level and - // retrieve the value of its CD - traversal_state.parent_stack_position++; - traversal_state.parent_stack[traversal_state.parent_stack_position] = octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]]; + //TODO: REWORK THIS IF STATEMENT, PERF KILLER - // Unlike the single shot DFS, it makes a bit more sense to have this at the tail of the while loop - // Do the logic steps to find which sub oct we step down into - if (voxel.x >= (jump_power / 2) + traversal_state.oct_pos.x) { + // If this CD had the far bit set + if (far_bit_mask & octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]]) { - // Set our voxel position to the (0,0) of the correct oct - traversal_state.oct_pos.x += (jump_power / 2); + // access the far point at which the head points too. Determine it's value, and add + // the count of the valid bits in the current CD to the index + uint far_pointer_index = + traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // current index + + (traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask); // the relative prt to the far ptr - // Set the idx to represent the move - traversal_state.idx_stack[traversal_state.scale] |= idx_set_x_mask; + // Get the absolute ptr from the far ptr and add the count to get the CD that we want + traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] = octree_descriptor_buffer[far_pointer_index] + count; + } + // If this CD doesn't have the far bit set, access the element at which head points to + // and then add the specified number of indices to get to the correct child descriptor + else { + traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] = + traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // The current index to this CD + (traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask) + count; // The relative dist + the number of bits that were valid + } - } - if (voxel.y >= (jump_power / 2) + traversal_state.oct_pos.y) { + // Now that we have the index set we can increase our parent stack position to the next level and + // retrieve the value of its CD + traversal_state.parent_stack_position++; + traversal_state.parent_stack[traversal_state.parent_stack_position] = octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]]; - traversal_state.oct_pos.y += (jump_power / 2); - traversal_state.idx_stack[traversal_state.scale] |= idx_set_y_mask; - } - if (voxel.z >= (jump_power / 2) + traversal_state.oct_pos.z) { + // Unlike the single shot DFS, it makes a bit more sense to have this at the tail of the while loop + // Do the logic steps to find which sub oct we step down into + if (voxel.x >= (jump_power / 2) + traversal_state.oct_pos.x) { - traversal_state.oct_pos.z += (jump_power / 2); - traversal_state.idx_stack[traversal_state.scale] |= idx_set_z_mask; - } + // Set our voxel position to the (0,0) of the correct oct + traversal_state.oct_pos.x += (jump_power / 2); - // Update the mask index with the new voxel we walked down to, and then check it's valid status - mask_index = traversal_state.idx_stack[traversal_state.scale]; - is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index]; + // Set the idx to represent the move + traversal_state.idx_stack[traversal_state.scale] |= idx_set_x_mask; - failsafe++; - if (failsafe > 20) - break; } + if (voxel.y >= (jump_power / 2) + traversal_state.oct_pos.y) { - // intersection_t += delta_t * jump_power * fabs(convert_float3(face_mask.xyz)); - // - // //int3 other_faces = face_mask == 1 ? 1 : -1; - // int3 other_faces = select((int3)(1,1,1), (int3)(0,0,0), (int3)(face_mask == 1)); - // //int3 added_diff = last_oct_pos + prev_jump_power - traversal_state.oct_pos; - // - // uint3 multiplier = (1, 1, 1);//convert_uint3(abs(traversal_state.oct_pos - last_oct_pos) * (1.0f/prev_jump_power)); - // - // last_oct_pos = traversal_state.oct_pos; - // - // intersection_t -= delta_t * prev_jump_power * convert_float3(other_faces.xyz); - // intersection_t += delta_t * convert_float3(multiplier) * jump_power * fabs(convert_float3(other_faces.xyz)); - - - - if (traversal_state.scale == 1 && is_valid){ - //voxel.xyz -= voxel_step.xyz * face_mask.xyz; - color_accumulator = mix((1.0f, 1.0f, 1.0f, 1.0f), (1.0f, 1.0f, 1.0f, 1.0f), 1.0f - max(distance_traveled / 700.0f, 0.0f)); - color_accumulator.w *= 4; - break; + traversal_state.oct_pos.y += (jump_power / 2); + traversal_state.idx_stack[traversal_state.scale] |= idx_set_y_mask; + } + if (voxel.z >= (jump_power / 2) + traversal_state.oct_pos.z) { + + traversal_state.oct_pos.z += (jump_power / 2); + traversal_state.idx_stack[traversal_state.scale] |= idx_set_z_mask; } - //voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))]; - } else { - // Fancy no branch version of the logic step - face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy); - intersection_t += delta_t * fabs(convert_float3(face_mask.xyz)); + + // Update the mask index with the new voxel we walked down to, and then check it's valid status + mask_index = traversal_state.idx_stack[traversal_state.scale]; + is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index]; + + failsafe++; + if (failsafe > 50) + break; + } + + // Add the delta for the jump power and the traversed face + intersection_t += delta_t * jump_power * fabs(convert_float3(face_mask.xyz)); + + + // Get the other faces + int3 other_faces = select((int3)(1,1,1), (int3)(0,0,0), (int3)(face_mask == 1)); + + // Get the amount of times we need to multiply the delta t to get to our face + uint3 multiplier = convert_uint3(abs(traversal_state.oct_pos - last_oct_pos) * (1.0f/prev_jump_power)); + + last_oct_pos = traversal_state.oct_pos; + + // Go back to the beginning intersection t's for the non traversed faces + intersection_t -= delta_t * prev_jump_power * convert_float3(other_faces.xyz); + + // add back the intersection for our current jump power + intersection_t += delta_t * convert_float3(multiplier) * jump_power * fabs(convert_float3(other_faces.xyz)); + + if (traversal_state.scale == 1 && is_valid){ + voxel_data = 5; + //voxel.xyz -= voxel_step.xyz * face_mask.xyz; + color_accumulator = mix((1.0f, 1.0f, 1.0f, 1.0f), (1.0f, 1.0f, 1.0f, 1.0f), 1.0f - max(distance_traveled / 700.0f, 0.0f)); + color_accumulator.w *= 4; + break; + } + //voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))]; + } else { + + // True will result in a -1, e.g (0, 0, -1) so negate it to positive + face_mask = -1 * (intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy)); + intersection_t += delta_t * convert_float3(face_mask.xyz); voxel.xyz += voxel_step.xyz * face_mask.xyz; // Test for out of bounds contions, add fog @@ -551,14 +571,17 @@ __kernel void raycaster( if (voxel_data == 5 || voxel_data == 6) { + // Determine where on the 2d plane the ray intersected face_position = zeroed_float3; tile_face_position = zeroed_float2; + + // Collect the sign of the face hit for ray redirection sign = (1.0f, 1.0f, 1.0f); // First determine the percent of the way the ray is towards the next intersection_t // in relation to the xyz position on the plane - if (face_mask.x == -1) { + if (face_mask.x == 1) { sign.x *= -1.0; @@ -573,7 +596,7 @@ __kernel void raycaster( face_position = (float3)(1.00001f, y_percent, z_percent); tile_face_position = face_position.yz; } - else if (face_mask.y == -1) { + else if (face_mask.y == 1) { sign.y *= -1.0; float x_percent = (intersection_t.x - (intersection_t.y - delta_t.y)) / delta_t.x; @@ -582,7 +605,7 @@ __kernel void raycaster( tile_face_position = face_position.xz; } - else if (face_mask.z == -1) { + else if (face_mask.z == 1) { sign.z *= -1.0; float x_percent = (intersection_t.x - (intersection_t.z - delta_t.z)) / delta_t.x; @@ -608,14 +631,14 @@ __kernel void raycaster( // We run into the Hairy ball problem, so we need to define // a special case for the zmask - if (face_mask.z == -1) { + if (face_mask.z == 1) { tile_face_position.x = 1.0f - tile_face_position.x; tile_face_position.y = 1.0f - tile_face_position.y; } } - face_position.z = select((face_position.z), (-face_position.z + 1.0f), (int)(ray_dir.z > 0)); - tile_face_position.y = select((tile_face_position.y), (-tile_face_position.y + 1.0f), (int)(ray_dir.z < 0)); + face_position.z = select((face_position.z), (-face_position.z + 1.0f), -1 * (int)(ray_dir.z > 0)); + tile_face_position.y = select((tile_face_position.y), (-tile_face_position.y + 1.0f), -1 * (int)(ray_dir.z < 0)); // Now we detect what type of of voxel we intersected and decide whether // to bend the ray, send out a light intersection ray, or add texture color @@ -647,10 +670,10 @@ __kernel void raycaster( return; voxel -= voxel_step * face_mask; - voxel_step = ( 1, 1, 1 ) * ((ray_dir > 0) - (ray_dir < 0)); + voxel_step = ( -1, -1, -1 ) * ((ray_dir > 0) - (ray_dir < 0)); delta_t = fabs(1.0f / ray_dir); - intersection_t = delta_t * ((hit_pos)-floor(hit_pos)) * convert_float3(voxel_step); + intersection_t = delta_t * ((hit_pos) - floor(hit_pos)) * convert_float3(voxel_step); intersection_t += delta_t * -convert_float3(isless(intersection_t, 0)); // REFLECTION @@ -670,8 +693,7 @@ __kernel void raycaster( return; voxel -= voxel_step * face_mask; - voxel_step = ( 1, 1, 1 ); - voxel_step *= (ray_dir > 0) - (ray_dir < 0); + voxel_step = ( -1, -1, -1 ) * (ray_dir > 0) - (ray_dir < 0); delta_t = fabs(1.0f / ray_dir); intersection_t = delta_t * ((hit_pos)-floor(hit_pos)) * convert_float3(voxel_step); diff --git a/src/Application.cpp b/src/Application.cpp index 3b49bc2..e209790 100644 --- a/src/Application.cpp +++ b/src/Application.cpp @@ -51,8 +51,8 @@ bool Application::init_clcaster() { raycaster->assign_map(map); camera = std::make_shared( - sf::Vector3f(30.5f, 30.5f, 30.5f), // Starting position - sf::Vector2f(1.57f, 0.0f), // Direction + sf::Vector3f(30.5f, 30.5f, 10.5f), // Starting position + sf::Vector2f(1.50f, -2.0f), // Direction window.get() ); raycaster->assign_camera(camera);