Added a function which creates VS filters that match the directory structure.

master
MitchellHansen 8 years ago
parent 3571bdcd61
commit eb54125a64

@ -0,0 +1,112 @@
#pragma once
#include <RayCaster.h>
#include <vector>
#include <iostream>
#include "util.hpp"
#include <map>
#include <string.h>
#ifdef linux
#include <CL/cl.h>
#include <CL/opencl.h>
#include <GL/glx.h>
#elif defined _WIN32
#include <CL/cl_gl.h>
#include <CL/cl.h>
#include <CL/opencl.h>
// Note: windows.h must be included before Gl/GL.h
#include <windows.h>
#include <GL/GL.h>
#elif defined TARGET_OS_MAC
# include <OpenGL/OpenGL.h>
# include <OpenCL/opencl.h>
#endif
struct device {
cl_device_id id;
cl_device_type type;
cl_uint clock_frequency;
char version[128];
cl_platform_id platform;
cl_uint comp_units;
};
class Hardware_Caster : public RayCaster
{
public:
Hardware_Caster();
virtual ~Hardware_Caster();
int init() override;
// In interop mode, this will create a GL texture that we share
// Otherwise, it will create the pixel buffer and pass that in as an image, retrieving it each draw
// Both will create the view matrix, view res buffer
void create_viewport(int width, int height, float v_fov, float h_fov) override;
void assign_lights(std::vector<char> *data) override;
void assign_map(Old_Map *map) override;
void assign_camera(Camera *camera) override;
void validate() override;
// TODO: Hoist this to the base class
void create_texture_atlas(sf::Texture *t, sf::Vector2i tile_dim);
// draw will abstract the gl sharing and software rendering
// methods of retrieving the screen buffer
void compute() override;
void draw(sf::RenderWindow* window) override;
int debug_quick_recompile();
void test_edit_viewport(int width, int height, float v_fov, float h_fov);
private:
int acquire_platform_and_device();
int create_shared_context();
int create_command_queue();
int check_cl_khr_gl_sharing();
int create_image_buffer(std::string buffer_name, cl_uint size, sf::Texture* texture);
int create_buffer(std::string buffer_name, cl_uint size, void* data);
int create_buffer(std::string buffer_name, cl_uint size, void* data, cl_mem_flags flags);
int store_buffer(cl_mem, std::string buffer_name);
int release_buffer(std::string buffer_name);
int compile_kernel(std::string kernel_source, bool is_path, std::string kernel_name);
int set_kernel_arg(std::string kernel_name, int index, std::string buffer_name);
int run_kernel(std::string kernel_name, const int work_size);
void print_kernel_arguments();
bool assert(int error_code, std::string function_name);
cl_device_id getDeviceID();
cl_platform_id getPlatformID();
cl_context getContext();
cl_kernel getKernel(std::string kernel_name);
cl_command_queue getCommandQueue();
cl_platform_id platform_id;
cl_device_id device_id;
cl_context context;
cl_command_queue command_queue;
std::map<std::string, cl_kernel> kernel_map;
std::map<std::string, cl_mem> buffer_map;
};

@ -0,0 +1,52 @@
#pragma once
#include <SFML/System/Vector3.hpp>
#include <SFML/System/Vector2.hpp>
#include <Map.h>
#include "Old_Map.h"
#include "Camera.h"
#include "LightController.h"
class RayCaster {
public:
enum ERROR_CODES {
SHARING_NOT_SUPPORTED = 800,
OPENCL_NOT_SUPPORTED = 801,
OPENCL_ERROR = 802,
ERR = 803
};
RayCaster();
virtual ~RayCaster();
virtual int init() = 0;
virtual void assign_map(Old_Map *map) = 0;
virtual void assign_camera(Camera *camera) = 0;
virtual void create_viewport(int width, int height, float v_fov, float h_fov) = 0;
virtual void assign_lights(std::vector<char> *data) = 0;
virtual void validate() = 0;
// draw will abstract the gl sharing and software rendering
// methods of retrieving the screen buffer
virtual void compute() = 0;
virtual void draw(sf::RenderWindow* window) = 0;
protected:
sf::Sprite viewport_sprite;
sf::Texture viewport_texture;
Old_Map * map = nullptr;
Camera *camera = nullptr;
// std::vector<LightController::PackedData> *lights;
std::vector<char> *lights;
int light_count = 0;
sf::Uint8 *viewport_image = nullptr;
sf::Vector4f *viewport_matrix = nullptr;
sf::Vector2i viewport_resolution;
int error = 0;
};

@ -0,0 +1,35 @@
#include "RayCaster.h"
#include <thread>
class Software_Caster : public RayCaster
{
public:
Software_Caster();
virtual ~Software_Caster();
int init() override;
// In interop mode, this will create a GL texture that we share
// Otherwise, it will create the pixel buffer and pass that in as an image, retrieving it each draw
// Both will create the view matrix, view res buffer
void create_viewport(int width, int height, float v_fov, float h_fov) override;
void assign_lights(std::vector<char> *data) override;
void assign_map(Old_Map *map) override;
void assign_camera(Camera *camera) override;
void validate() override;
// draw will abstract the gl sharing and software rendering
// methods of retrieving the screen buffer
void compute() override;
void draw(sf::RenderWindow* window) override;
private:
void cast_viewport();
void cast_thread(int start_id, int end_id);
void cast_ray(int id);
void blit_pixel(sf::Color color, sf::Vector2i position, sf::Vector3i mask);
sf::Color global_light(sf::Color in, sf::Vector3i mask);
};

@ -0,0 +1,896 @@
#include "Hardware_Caster.h"
Hardware_Caster::Hardware_Caster() {
}
Hardware_Caster::~Hardware_Caster() {
}
int Hardware_Caster::init() {
// Initialize opencl up to the point where we start assigning buffers
error = acquire_platform_and_device();
if(assert(error, "aquire_platform_and_device"))
return error;
error = check_cl_khr_gl_sharing();
if(assert(error, "check_cl_khr_gl_sharing"))
return error;
error = create_shared_context();
if (assert(error, "create_shared_context"))
return error;
error = create_command_queue();
if (assert(error, "create_command_queue"))
return error;
error = compile_kernel("../kernels/ray_caster_kernel.cl", true, "raycaster");
if (assert(error, "compile_kernel")) {
std::cin.get(); // hang the output window so we can read the error
return error;
}
srand(time(NULL));
int *seed_memory = new int[1920*1080];
create_buffer("seed", sizeof(int) * 1920 * 1080, seed_memory);
return 1;
}
void Hardware_Caster::assign_map(Old_Map *map) {
this->map = map;
auto dimensions = map->getDimensions();
create_buffer("map", sizeof(char) * dimensions.x * dimensions.y * dimensions.z, map->get_voxel_data());
create_buffer("map_dimensions", sizeof(int) * 3, &dimensions);
}
void Hardware_Caster::assign_camera(Camera *camera) {
this->camera = camera;
create_buffer("camera_direction", sizeof(float) * 4, (void*)camera->get_direction_pointer(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR);
create_buffer("camera_position", sizeof(float) * 4, (void*)camera->get_position_pointer(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR);
}
void Hardware_Caster::validate()
{
// Check to make sure everything has been entered;
if (camera == nullptr ||
map == nullptr ||
viewport_image == nullptr ||
viewport_matrix == nullptr) {
std::cout << "Raycaster.validate() failed, camera, map, or viewport not initialized";
} else {
// Set all the kernel args
set_kernel_arg("raycaster", 0, "map");
set_kernel_arg("raycaster", 1, "map_dimensions");
set_kernel_arg("raycaster", 2, "viewport_resolution");
set_kernel_arg("raycaster", 3, "viewport_matrix");
set_kernel_arg("raycaster", 4, "camera_direction");
set_kernel_arg("raycaster", 5, "camera_position");
set_kernel_arg("raycaster", 6, "lights");
set_kernel_arg("raycaster", 7, "light_count");
set_kernel_arg("raycaster", 8, "image");
set_kernel_arg("raycaster", 9, "seed");
set_kernel_arg("raycaster", 10, "texture_atlas");
set_kernel_arg("raycaster", 11, "atlas_dim");
set_kernel_arg("raycaster", 12, "tile_dim");
//print_kernel_arguments();
}
}
void Hardware_Caster::create_texture_atlas(sf::Texture *t, sf::Vector2i tile_dim) {
create_image_buffer("texture_atlas", t->getSize().x * t->getSize().x * 4 * sizeof(float), t);
// create_buffer observes arg 3's
sf::Vector2u v = t->getSize();
create_buffer("atlas_dim", sizeof(sf::Vector2u) , &v);
create_buffer("tile_dim", sizeof(sf::Vector2i), &tile_dim);
}
void Hardware_Caster::compute()
{
// correlating work size with texture size? good, bad?
run_kernel("raycaster", viewport_texture.getSize().x * viewport_texture.getSize().y);
}
// There is a possibility that I would want to move this over to be all inside it's own
// container to make it so it can be changed via CL_MEM_USE_HOST_PTR. But I doubt it
// would ever be called enough to warrent that
void Hardware_Caster::create_viewport(int width, int height, float v_fov, float h_fov) {
// CL needs the screen resolution
sf::Vector2i view_res(width, height);
create_buffer("viewport_resolution", sizeof(int) * 2, &view_res);
// And an array of vectors describing the way the "lens" of our
// camera works
// This could be modified to make some odd looking camera lenses
double y_increment_radians = DegreesToRadians(v_fov / view_res.y);
double x_increment_radians = DegreesToRadians(h_fov / view_res.x);
viewport_matrix = new sf::Vector4f[width * height * 4];
for (int y = -view_res.y / 2; y < view_res.y / 2; y++) {
for (int x = -view_res.x / 2; x < view_res.x / 2; x++) {
// The base ray direction to slew from
sf::Vector3f ray(1, 0, 0);
// Y axis, pitch
ray = sf::Vector3f(
static_cast<float>(ray.z * sin(y_increment_radians * y) + ray.x * cos(y_increment_radians * y)),
static_cast<float>(ray.y),
static_cast<float>(ray.z * cos(y_increment_radians * y) - ray.x * sin(y_increment_radians * y))
);
// Z axis, yaw
ray = sf::Vector3f(
static_cast<float>(ray.x * cos(x_increment_radians * x) - ray.y * sin(x_increment_radians * x)),
static_cast<float>(ray.x * sin(x_increment_radians * x) + ray.y * cos(x_increment_radians * x)),
static_cast<float>(ray.z)
);
// correct for the base ray pointing to (1, 0, 0) as (0, 0). Should equal (1.57, 0)
ray = sf::Vector3f(
static_cast<float>(ray.z * sin(-1.57) + ray.x * cos(-1.57)),
static_cast<float>(ray.y),
static_cast<float>(ray.z * cos(-1.57) - ray.x * sin(-1.57))
);
int index = (x + view_res.x / 2) + view_res.x * (y + view_res.y / 2);
ray = Normalize(ray);
viewport_matrix[index] = sf::Vector4f(
ray.x,
ray.y,
ray.z,
0
);
}
}
create_buffer("viewport_matrix", sizeof(float) * 4 * view_res.x * view_res.y, viewport_matrix, CL_MEM_USE_HOST_PTR);
// Create the image that opencl's rays write to
viewport_image = new sf::Uint8[width * height * 4];
for (int i = 0; i < width * height * 4; i += 4) {
viewport_image[i] = 255; // R
viewport_image[i + 1] = 255; // G
viewport_image[i + 2] = 255; // B
viewport_image[i + 3] = 100; // A
}
// Interop lets us keep a reference to it as a texture
viewport_texture.create(width, height);
viewport_texture.update(viewport_image);
viewport_sprite.setTexture(viewport_texture);
// Pass the buffer to opencl
create_image_buffer("image", sizeof(sf::Uint8) * width * height * 4, &viewport_texture);
}
//void Hardware_Caster::assign_lights(std::vector<LightController> *lights) {
//
// //this->lights = ;
//
// std::cout << sizeof(LightController);
// std::cout << sizeof(float);
// light_count = static_cast<int>(lights->size());
//
// //create_buffer("lights", sizeof(float) * 10 * light_count, this->lights->data(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR);
//
// create_buffer("light_count", sizeof(int), &light_count);
//
//}
void Hardware_Caster::assign_lights(std::vector<char> *data) {
// Get a pointer to the packed light data
// this->lights = data;
light_count = static_cast<int>(lights->size());
size_t packed_size = sizeof(LightController::PackedData);
create_buffer("lights", packed_size * light_count, lights->data(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR);
create_buffer("light_count", sizeof(int), &light_count);
}
void Hardware_Caster::draw(sf::RenderWindow* window) {
window->draw(viewport_sprite);
}
int Hardware_Caster::debug_quick_recompile()
{
int error = compile_kernel("../kernels/ray_caster_kernel.cl", true, "raycaster");
if (assert(error, "compile_kernel")) {
std::cin.get(); // hang the output window so we can read the error
return error;
}
validate();
return 1;
}
void Hardware_Caster::test_edit_viewport(int width, int height, float v_fov, float h_fov)
{
sf::Vector2i view_res(width, height);
double y_increment_radians = DegreesToRadians(v_fov / view_res.y);
double x_increment_radians = DegreesToRadians(h_fov / view_res.x);
for (int y = -view_res.y / 2; y < view_res.y / 2; y++) {
for (int x = -view_res.x / 2; x < view_res.x / 2; x++) {
// The base ray direction to slew from
sf::Vector3f ray(1, 0, 0);
// Y axis, pitch
ray = sf::Vector3f(
static_cast<float>(ray.z * sin(y_increment_radians * y) + ray.x * cos(y_increment_radians * y)),
static_cast<float>(ray.y),
static_cast<float>(ray.z * cos(y_increment_radians * y) - ray.x * sin(y_increment_radians * y))
);
// Z axis, yaw
ray = sf::Vector3f(
static_cast<float>(ray.x * cos(x_increment_radians * x) - ray.y * sin(x_increment_radians * x)),
static_cast<float>(ray.x * sin(x_increment_radians * x) + ray.y * cos(x_increment_radians * x)),
static_cast<float>(ray.z)
);
// correct for the base ray pointing to (1, 0, 0) as (0, 0). Should equal (1.57, 0)
ray = sf::Vector3f(
static_cast<float>(ray.z * sin(-1.57) + ray.x * cos(-1.57)),
static_cast<float>(ray.y),
static_cast<float>(ray.z * cos(-1.57) - ray.x * sin(-1.57))
);
int index = (x + view_res.x / 2) + view_res.x * (y + view_res.y / 2);
ray = Normalize(ray);
viewport_matrix[index] = sf::Vector4f(
ray.x,
ray.y,
ray.z,
0
);
}
}
}
int Hardware_Caster::acquire_platform_and_device() {
// Get the number of platforms
cl_uint plt_cnt = 0;
clGetPlatformIDs(0, nullptr, &plt_cnt);
// Fetch the platforms
std::map<cl_platform_id, std::vector<device>> plt_ids;
// buffer before map init
std::vector<cl_platform_id> plt_buf(plt_cnt);
clGetPlatformIDs(plt_cnt, plt_buf.data(), nullptr);
// Map init
for (auto id : plt_buf) {
plt_ids.emplace(std::make_pair(id, std::vector<device>()));
}
// For each platform, populate its devices
for (unsigned int i = 0; i < plt_cnt; i++) {
cl_uint deviceIdCount = 0;
error = clGetDeviceIDs(plt_buf[i], CL_DEVICE_TYPE_ALL, 0, nullptr, &deviceIdCount);
// Check to see if we even have opencl on this machine
if (deviceIdCount == 0) {
std::cout << "There appears to be no platforms supporting opencl" << std::endl;
return OPENCL_NOT_SUPPORTED;
}
// Get the device ids
std::vector<cl_device_id> deviceIds(deviceIdCount);
error = clGetDeviceIDs(plt_buf[i], CL_DEVICE_TYPE_ALL, deviceIdCount, deviceIds.data(), NULL);
if (assert(error, "clGetDeviceIDs"))
return OPENCL_ERROR;
for (unsigned int q = 0; q < deviceIdCount; q++) {
device d;
d.id = deviceIds[q];
clGetDeviceInfo(d.id, CL_DEVICE_PLATFORM, sizeof(cl_platform_id), &d.platform, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_VERSION, sizeof(char) * 128, &d.version, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_TYPE, sizeof(cl_device_type), &d.type, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_MAX_CLOCK_FREQUENCY, sizeof(cl_uint), &d.clock_frequency, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(cl_uint), &d.comp_units, NULL);
plt_ids.at(d.platform).push_back(d);
}
}
// The devices how now been queried we want to shoot for a gpu with the fastest clock,
// falling back to the cpu with the fastest clock if we weren't able to find one
device current_best_device;
current_best_device.type = 0; // Set this to 0 so the first run always selects a new device
current_best_device.clock_frequency = 0;
current_best_device.comp_units = 0;
for (auto kvp : plt_ids) {
for (auto device : kvp.second) {
// Gonna just split this up into cases. There are so many devices I cant test with
// that opencl supports. I'm not going to waste my time making a generic implimentation
// Upon success of a condition, set the current best device values
if (device.type == CL_DEVICE_TYPE_GPU && current_best_device.type != CL_DEVICE_TYPE_GPU) {
current_best_device = device;
}
else if (device.comp_units > current_best_device.comp_units) {
current_best_device = device;
}
else if (current_best_device.type != CL_DEVICE_TYPE_GPU && device.clock_frequency > current_best_device.clock_frequency) {
current_best_device = device;
}
}
}
platform_id = current_best_device.platform;
device_id = current_best_device.id;
return 1;
};
int Hardware_Caster::create_shared_context() {
// Hurray for standards!
// Setup the context properties to grab the current GL context
#ifdef linux
cl_context_properties context_properties[] = {
CL_GL_CONTEXT_KHR, (cl_context_properties)glXGetCurrentContext(),
CL_GLX_DISPLAY_KHR, (cl_context_properties)glXGetCurrentDisplay(),
CL_CONTEXT_PLATFORM, (cl_context_properties)platform_id,
0
};
#elif defined _WIN32
HGLRC hGLRC = wglGetCurrentContext();
HDC hDC = wglGetCurrentDC();
cl_context_properties context_properties[] = {
CL_CONTEXT_PLATFORM, (cl_context_properties)platform_id,
CL_GL_CONTEXT_KHR, (cl_context_properties)hGLRC,
CL_WGL_HDC_KHR, (cl_context_properties)hDC,
0
};
#elif defined TARGET_OS_MAC
CGLContextObj glContext = CGLGetCurrentContext();
CGLShareGroupObj shareGroup = CGLGetShareGroup(glContext);
cl_context_properties context_properties[] = {
CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE,
(cl_context_properties)shareGroup,
0
};
#endif
// Create our shared context
context = clCreateContext(
context_properties,
1,
&device_id,
nullptr, nullptr,
&error
);
if (assert(error, "clCreateContext"))
return OPENCL_ERROR;
return 1;
}
int Hardware_Caster::create_command_queue() {
// If context and device_id have initialized
if (context && device_id) {
command_queue = clCreateCommandQueue(context, device_id, 0, &error);
if (assert(error, "clCreateCommandQueue"))
return OPENCL_ERROR;
return 1;
}
else {
std::cout << "Failed creating the command queue. Context or device_id not initialized";
return OPENCL_ERROR;
}
}
int Hardware_Caster::check_cl_khr_gl_sharing() {
// Test for sharing
size_t ext_str_size = 1024;
char *ext_str = new char[ext_str_size];
clGetDeviceInfo(device_id, CL_DEVICE_EXTENSIONS, ext_str_size, ext_str, &ext_str_size);
if (std::string(ext_str).find("cl_khr_gl_sharing") == std::string::npos) {
std::cout << "No support for the cl_khr_gl_sharing extension";
delete ext_str;
return RayCaster::SHARING_NOT_SUPPORTED;
}
delete ext_str;
return 1;
}
int Hardware_Caster::compile_kernel(std::string kernel_source, bool is_path, std::string kernel_name) {
const char* source;
std::string tmp;
if (is_path) {
//Load in the kernel, and c stringify it
tmp = read_file(kernel_source);
source = tmp.c_str();
}
else {
source = kernel_source.c_str();
}
size_t kernel_source_size = strlen(source);
// Load the source into CL's data structure
cl_program program = clCreateProgramWithSource(
context, 1,
&source,
&kernel_source_size, &error
);
// This is not for compilation, it only loads the source
if (assert(error, "clCreateProgramWithSource"))
return OPENCL_ERROR;
// Try and build the program
error = clBuildProgram(program, 1, &device_id, NULL, NULL, NULL);
// Check to see if it errored out
if (assert(error, "clBuildProgram")) {
// Get the size of the queued log
size_t log_size;
clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
char *log = new char[log_size];
// Grab the log
clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, log_size, log, NULL);
std::cout << log;
return OPENCL_ERROR;
}
// Done initializing the kernel
cl_kernel kernel = clCreateKernel(program, kernel_name.c_str(), &error);
if (assert(error, "clCreateKernel"))
return OPENCL_ERROR;
// Do I want these to overlap when repeated??
kernel_map[kernel_name] = kernel;
//kernel_map.emplace(std::make_pair(kernel_name, kernel));
return 1;
}
int Hardware_Caster::set_kernel_arg(
std::string kernel_name,
int index,
std::string buffer_name) {
error = clSetKernelArg(
kernel_map.at(kernel_name),
index,
sizeof(cl_mem),
(void *)&buffer_map.at(buffer_name));
if (assert(error, "clSetKernelArg"))
return OPENCL_ERROR;
return 0;
}
int Hardware_Caster::create_image_buffer(std::string buffer_name, cl_uint size, sf::Texture* texture) {
// I can imagine overwriting buffers will be common, so I think
// this is safe to overwrite / release old buffers quietly
if (buffer_map.count(buffer_name) > 0) {
release_buffer(buffer_name);
}
int error;
cl_mem buff = clCreateFromGLTexture(
getContext(), CL_MEM_WRITE_ONLY, GL_TEXTURE_2D,
0, texture->getNativeHandle(), &error);
if (assert(error, "clCreateFromGLTexture"))
return OPENCL_ERROR;
store_buffer(buff, buffer_name);
return 1;
}
int Hardware_Caster::create_buffer(std::string buffer_name, cl_uint size, void* data, cl_mem_flags flags) {
// I can imagine overwriting buffers will be common, so I think
// this is safe to overwrite / release old buffers quietly
if (buffer_map.count(buffer_name) > 0) {
release_buffer(buffer_name);
}
cl_mem buff = clCreateBuffer(
getContext(), flags,
size, data, &error
);
if (assert(error, "clCreateBuffer"))
return OPENCL_ERROR;
store_buffer(buff, buffer_name);
return 1;
}
int Hardware_Caster::create_buffer(std::string buffer_name, cl_uint size, void* data) {
// I can imagine overwriting buffers will be common, so I think
// this is safe to overwrite / release old buffers quietly
if (buffer_map.count(buffer_name) > 0) {
release_buffer(buffer_name);
}
cl_mem buff = clCreateBuffer(
getContext(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
size, data, &error
);
if (assert(error, "clCreateBuffer"))
return OPENCL_ERROR;
store_buffer(buff, buffer_name);
return 1;
}
int Hardware_Caster::release_buffer(std::string buffer_name) {
if (buffer_map.count(buffer_name) > 0) {
int error = clReleaseMemObject(buffer_map.at(buffer_name));
if (assert(error, "clReleaseMemObject")) {
std::cout << "Error releasing buffer : " << buffer_name;
std::cout << "Buffer not removed";
return -1;
} else {
buffer_map.erase(buffer_name);
}
} else {
std::cout << "Error releasing buffer : " << buffer_name;
std::cout << "Buffer not found";
return -1;
}
return 1;
}
int Hardware_Caster::store_buffer(cl_mem buffer, std::string buffer_name) {
buffer_map.emplace(std::make_pair(buffer_name, buffer));
return 1;
}
int Hardware_Caster::run_kernel(std::string kernel_name, const int work_size) {
size_t global_work_size[1] = { static_cast<size_t>(work_size) };
cl_kernel kernel = kernel_map.at(kernel_name);
error = clEnqueueAcquireGLObjects(getCommandQueue(), 1, &buffer_map.at("image"), 0, 0, 0);
if (assert(error, "clEnqueueAcquireGLObjects"))
return OPENCL_ERROR;
//error = clEnqueueTask(command_queue, kernel, 0, NULL, NULL);
error = clEnqueueNDRangeKernel(
command_queue, kernel,
1, NULL, global_work_size,
NULL, 0, NULL, NULL);
if (assert(error, "clEnqueueNDRangeKernel"))
return OPENCL_ERROR;
clFinish(getCommandQueue());
// What if errors out and gl objects are never released?
error = clEnqueueReleaseGLObjects(getCommandQueue(), 1, &buffer_map.at("image"), 0, NULL, NULL);
if (assert(error, "clEnqueueReleaseGLObjects"))
return OPENCL_ERROR;
return 1;
}
void Hardware_Caster::print_kernel_arguments()
{
compile_kernel("../kernels/print_arguments.cl", true, "printer");
set_kernel_arg("printer", 0, "map");
set_kernel_arg("printer", 1, "map_dimensions");
set_kernel_arg("printer", 2, "viewport_resolution");
set_kernel_arg("printer", 3, "viewport_matrix");
set_kernel_arg("printer", 4, "camera_direction");
set_kernel_arg("printer", 5, "camera_position");
set_kernel_arg("printer", 6, "lights");
set_kernel_arg("printer", 7, "light_count");
set_kernel_arg("printer", 8, "image");
run_kernel("printer", 1);
}
cl_device_id Hardware_Caster::getDeviceID() { return device_id; };
cl_platform_id Hardware_Caster::getPlatformID() { return platform_id; };
cl_context Hardware_Caster::getContext() { return context; };
cl_kernel Hardware_Caster::getKernel(std::string kernel_name) { return kernel_map.at(kernel_name); };
cl_command_queue Hardware_Caster::getCommandQueue() { return command_queue; };
bool Hardware_Caster::assert(int error_code, std::string function_name) {
// Just gonna do a little jump table here, just error codes so who cares
std::string err_msg = "Error : ";
switch (error_code) {
case CL_SUCCESS:
return false;
case 1:
return false;
case CL_DEVICE_NOT_FOUND:
err_msg += "CL_DEVICE_NOT_FOUND";
break;
case CL_DEVICE_NOT_AVAILABLE:
err_msg = "CL_DEVICE_NOT_AVAILABLE";
break;
case CL_COMPILER_NOT_AVAILABLE:
err_msg = "CL_COMPILER_NOT_AVAILABLE";
break;
case CL_MEM_OBJECT_ALLOCATION_FAILURE:
err_msg = "CL_MEM_OBJECT_ALLOCATION_FAILURE";
break;
case CL_OUT_OF_RESOURCES:
err_msg = "CL_OUT_OF_RESOURCES";
break;
case CL_OUT_OF_HOST_MEMORY:
err_msg = "CL_OUT_OF_HOST_MEMORY";
break;
case CL_PROFILING_INFO_NOT_AVAILABLE:
err_msg = "CL_PROFILING_INFO_NOT_AVAILABLE";
break;
case CL_MEM_COPY_OVERLAP:
err_msg = "CL_MEM_COPY_OVERLAP";
break;
case CL_IMAGE_FORMAT_MISMATCH:
err_msg = "CL_IMAGE_FORMAT_MISMATCH";
break;
case CL_IMAGE_FORMAT_NOT_SUPPORTED:
err_msg = "CL_IMAGE_FORMAT_NOT_SUPPORTED";
break;
case CL_BUILD_PROGRAM_FAILURE:
err_msg = "CL_BUILD_PROGRAM_FAILURE";
break;
case CL_MAP_FAILURE:
err_msg = "CL_MAP_FAILURE";
break;
case CL_MISALIGNED_SUB_BUFFER_OFFSET:
err_msg = "CL_MISALIGNED_SUB_BUFFER_OFFSET";
break;
case CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST:
err_msg = "CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST";
break;
case CL_COMPILE_PROGRAM_FAILURE:
err_msg = "CL_COMPILE_PROGRAM_FAILURE";
break;
case CL_LINKER_NOT_AVAILABLE:
err_msg = "CL_LINKER_NOT_AVAILABLE";
break;
case CL_LINK_PROGRAM_FAILURE:
err_msg = "CL_LINK_PROGRAM_FAILURE";
break;
case CL_DEVICE_PARTITION_FAILED:
err_msg = "CL_DEVICE_PARTITION_FAILED";
break;
case CL_KERNEL_ARG_INFO_NOT_AVAILABLE:
err_msg = "CL_KERNEL_ARG_INFO_NOT_AVAILABLE";
break;
case CL_INVALID_VALUE:
err_msg = "CL_INVALID_VALUE";
break;
case CL_INVALID_DEVICE_TYPE:
err_msg = "CL_INVALID_DEVICE_TYPE";
break;
case CL_INVALID_PLATFORM:
err_msg = "CL_INVALID_PLATFORM";
break;
case CL_INVALID_DEVICE:
err_msg = "CL_INVALID_DEVICE";
break;
case CL_INVALID_CONTEXT:
err_msg = "CL_INVALID_CONTEXT";
break;
case CL_INVALID_QUEUE_PROPERTIES:
err_msg = "CL_INVALID_QUEUE_PROPERTIES";
break;
case CL_INVALID_COMMAND_QUEUE:
err_msg = "CL_INVALID_COMMAND_QUEUE";
break;
case CL_INVALID_HOST_PTR:
err_msg = "CL_INVALID_HOST_PTR";
break;
case CL_INVALID_MEM_OBJECT:
err_msg = "CL_INVALID_MEM_OBJECT";
break;
case CL_INVALID_IMAGE_FORMAT_DESCRIPTOR:
err_msg = "CL_INVALID_IMAGE_FORMAT_DESCRIPTOR";
break;
case CL_INVALID_IMAGE_SIZE:
err_msg = "CL_INVALID_IMAGE_SIZE";
break;
case CL_INVALID_SAMPLER:
err_msg = "CL_INVALID_SAMPLER";
break;
case CL_INVALID_BINARY:
err_msg = "CL_INVALID_BINARY";
break;
case CL_INVALID_BUILD_OPTIONS:
err_msg = "CL_INVALID_BUILD_OPTIONS";
break;
case CL_INVALID_PROGRAM:
err_msg = "CL_INVALID_PROGRAM";
break;
case CL_INVALID_PROGRAM_EXECUTABLE:
err_msg = "CL_INVALID_PROGRAM_EXECUTABLE";
break;
case CL_INVALID_KERNEL_NAME:
err_msg = "CL_INVALID_KERNEL_NAME";
break;
case CL_INVALID_KERNEL_DEFINITION:
err_msg = "CL_INVALID_KERNEL_DEFINITION";
break;
case CL_INVALID_KERNEL:
err_msg = "CL_INVALID_KERNEL";
break;
case CL_INVALID_ARG_INDEX:
err_msg = "CL_INVALID_ARG_INDEX";
break;
case CL_INVALID_ARG_VALUE:
err_msg = "CL_INVALID_ARG_VALUE";
break;
case CL_INVALID_ARG_SIZE:
err_msg = "CL_INVALID_ARG_SIZE";
break;
case CL_INVALID_KERNEL_ARGS:
err_msg = "CL_INVALID_KERNEL_ARGS";
break;
case CL_INVALID_WORK_DIMENSION:
err_msg = "CL_INVALID_WORK_DIMENSION";
break;
case CL_INVALID_WORK_GROUP_SIZE:
err_msg = "CL_INVALID_WORK_GROUP_SIZE";
break;
case CL_INVALID_WORK_ITEM_SIZE:
err_msg = "CL_INVALID_WORK_ITEM_SIZE";
break;
case CL_INVALID_GLOBAL_OFFSET:
err_msg = "CL_INVALID_GLOBAL_OFFSET";
break;
case CL_INVALID_EVENT_WAIT_LIST:
err_msg = "CL_INVALID_EVENT_WAIT_LIST";
break;
case CL_INVALID_EVENT:
err_msg = "CL_INVALID_EVENT";
break;
case CL_INVALID_OPERATION:
err_msg = "CL_INVALID_OPERATION";
break;
case CL_INVALID_GL_OBJECT:
err_msg = "CL_INVALID_GL_OBJECT";
break;
case CL_INVALID_BUFFER_SIZE:
err_msg = "CL_INVALID_BUFFER_SIZE";
break;
case CL_INVALID_MIP_LEVEL:
err_msg = "CL_INVALID_MIP_LEVEL";
break;
case CL_INVALID_GLOBAL_WORK_SIZE:
err_msg = "CL_INVALID_GLOBAL_WORK_SIZE";
break;
case CL_INVALID_PROPERTY:
err_msg = "CL_INVALID_PROPERTY";
break;
case CL_INVALID_IMAGE_DESCRIPTOR:
err_msg = "CL_INVALID_IMAGE_DESCRIPTOR";
break;
case CL_INVALID_COMPILER_OPTIONS:
err_msg = "CL_INVALID_COMPILER_OPTIONS";
break;
case CL_INVALID_LINKER_OPTIONS:
err_msg = "CL_INVALID_LINKER_OPTIONS";
break;
case CL_INVALID_DEVICE_PARTITION_COUNT:
err_msg = "CL_INVALID_DEVICE_PARTITION_COUNT";
break;
case RayCaster::SHARING_NOT_SUPPORTED:
err_msg = "SHARING_NOT_SUPPORTED";
break;
case RayCaster::OPENCL_NOT_SUPPORTED:
err_msg = "OPENCL_NOT_SUPPORTED";
break;
case RayCaster::OPENCL_ERROR:
err_msg = "OPENCL_ERROR";
break;
case RayCaster::ERR:
err_msg = "ERROR";
break;
}
std::cout << err_msg << " =at= " << function_name << std::endl;
return true;
}

@ -0,0 +1,7 @@
#include "RayCaster.h"
RayCaster::RayCaster() {
}
RayCaster::~RayCaster() {
}

@ -0,0 +1,343 @@
#include "Software_Caster.h"
Software_Caster::Software_Caster()
{
}
Software_Caster::~Software_Caster()
{
}
int Software_Caster::init()
{
return 1;
}
void Software_Caster::create_viewport(int width, int height, float v_fov, float h_fov)
{
// CL needs the screen resolution
viewport_resolution = sf::Vector2i(width, height);
// And an array of vectors describing the way the "lens" of our
// camera works
// This could be modified to make some odd looking camera lenses
double y_increment_radians = DegreesToRadians(v_fov / viewport_resolution.y);
double x_increment_radians = DegreesToRadians(h_fov / viewport_resolution.x);
viewport_matrix = new sf::Vector4f[width * height * 4];
for (int y = -viewport_resolution.y / 2; y < viewport_resolution.y / 2; y++) {
for (int x = -viewport_resolution.x / 2; x < viewport_resolution.x / 2; x++) {
// The base ray direction to slew from
sf::Vector3f ray(1, 0, 0);
// Y axis, pitch
ray = sf::Vector3f(
static_cast<float>(ray.z * sin(y_increment_radians * y) + ray.x * cos(y_increment_radians * y)),
static_cast<float>(ray.y),
static_cast<float>(ray.z * cos(y_increment_radians * y) - ray.x * sin(y_increment_radians * y))
);
// Z axis, yaw
ray = sf::Vector3f(
static_cast<float>(ray.x * cos(x_increment_radians * x) - ray.y * sin(x_increment_radians * x)),
static_cast<float>(ray.x * sin(x_increment_radians * x) + ray.y * cos(x_increment_radians * x)),
static_cast<float>(ray.z)
);
int index = (x + viewport_resolution.x / 2) + viewport_resolution.x * (y + viewport_resolution.y / 2);
ray = Normalize(ray);
viewport_matrix[index] = sf::Vector4f(
ray.x,
ray.y,
ray.z,
0
);
}
}
// Create the image that opencl's rays write to
viewport_image = new sf::Uint8[width * height * 4];
for (int i = 0; i < width * height * 4; i += 4) {
viewport_image[i] = 255; // R
viewport_image[i + 1] = 255; // G
viewport_image[i + 2] = 255; // B
viewport_image[i + 3] = 255; // A
}
// Interop lets us keep a reference to it as a texture
viewport_texture.create(width, height);
viewport_texture.update(viewport_image);
viewport_sprite.setTexture(viewport_texture);
}
void Software_Caster::assign_lights(std::vector<char> *data) {
// this->lights = data;
int light_count = static_cast<int>(data->size());
}
void Software_Caster::assign_map(Old_Map * map) {
this->map = map;
}
void Software_Caster::assign_camera(Camera * camera) {
this->camera = camera;
}
void Software_Caster::validate() {
// Check to make sure everything has been entered;
if (camera == nullptr ||
map == nullptr ||
viewport_image == nullptr ||
viewport_matrix == nullptr) {
std::cout << "Raycaster.validate() failed, camera, map, or viewport not initialized";
}
}
void Software_Caster::compute() {
cast_viewport();
}
void Software_Caster::draw(sf::RenderWindow * window) {
viewport_texture.update(viewport_image);
window->draw(viewport_sprite);
}
void Software_Caster::cast_viewport() {
std::vector<std::thread*> threads;
for (int i = 0; i < 13; i++) {
int s = viewport_resolution.x * ((viewport_resolution.y / 13) * i);
int e = viewport_resolution.x * ((viewport_resolution.y / 13) * (i + 1));
threads.push_back(new std::thread(&Software_Caster::cast_thread, this, s, e));
}
for (auto i : threads) {
i->join();
delete i;
}
}
void Software_Caster::cast_thread(int start_id, int end_id) {
for (int i = start_id; i < end_id; i++) {
cast_ray(i);
}
}
void Software_Caster::cast_ray(int id)
{
sf::Vector2i pixel = { id % viewport_resolution.x, id / viewport_resolution.x };
// 4f 3f ??
sf::Vector4f ray_dir = viewport_matrix[pixel.x + viewport_resolution.x * pixel.y];
ray_dir = sf::Vector4f(
ray_dir.z * sin(camera->get_direction().x) + ray_dir.x * cos(camera->get_direction().x),
ray_dir.y,
ray_dir.z * cos(camera->get_direction().x) - ray_dir.x * sin(camera->get_direction().x),
0
);
ray_dir = sf::Vector4f(
ray_dir.x * cos(camera->get_direction().y) - ray_dir.y * sin(camera->get_direction().y),
ray_dir.x * sin(camera->get_direction().y) + ray_dir.y * cos(camera->get_direction().y),
ray_dir.z,
0
);
// Setup the voxel step based on what direction the ray is pointing
sf::Vector3i voxel_step = sf::Vector3i(
static_cast<int>(1 * (abs(ray_dir.x) / ray_dir.x)),
static_cast<int>(1 * (abs(ray_dir.y) / ray_dir.y)),
static_cast<int>(1 * (abs(ray_dir.z) / ray_dir.z))
);
// Setup the voxel coords from the camera origin
sf::Vector3i voxel = sf::Vector3i(
static_cast<int>(camera->get_position().x),
static_cast<int>(camera->get_position().y),
static_cast<int>(camera->get_position().z)
);
// Delta T is the units a ray must travel along an axis in order to
// traverse an integer split
sf::Vector3f delta_t = sf::Vector3f(
fabs(1.0f / ray_dir.x),
fabs(1.0f / ray_dir.y),
fabs(1.0f / ray_dir.z)
);
// offset is how far we are into a voxel, enables sub voxel movement
sf::Vector3f offset = sf::Vector3f(
(camera->get_position().x - floor(camera->get_position().x)) * voxel_step.x,
(camera->get_position().y - floor(camera->get_position().y)) * voxel_step.y,
(camera->get_position().z - floor(camera->get_position().z)) * voxel_step.z
);
// Intersection T is the collection of the next intersection points
// for all 3 axis XYZ.
sf::Vector3f intersection_t = sf::Vector3f(
delta_t.x * offset.x,
delta_t.y * offset.y,
delta_t.z * offset.z
);
// for negative values, wrap around the delta_t, rather not do this
// component wise, but it doesn't appear to want to work
if (intersection_t.x < 0) {
intersection_t.x += delta_t.x;
}
if (intersection_t.y < 0) {
intersection_t.y += delta_t.y;
}
if (intersection_t.z < 0) {
intersection_t.z += delta_t.z;
}
// use a ghetto ass rng to give rays a "fog" appearance
sf::Vector2i randoms = { 3, 14 };
int seed = randoms.x + id;
int t = seed ^ (seed << 11);
int result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8));
int max_dist = 800 + result % 50;
int dist = 0;
sf::Vector3i mask = { 0, 0, 0 };
// Andrew Woo's raycasting algo
do {
if ((intersection_t.x) < (intersection_t.y)) {
if ((intersection_t.x) < (intersection_t.z)) {
mask.x = 1;
voxel.x += voxel_step.x;
intersection_t.x = intersection_t.x + delta_t.x;
}
else {
mask.z = 1;
voxel.z += voxel_step.z;
intersection_t.z = intersection_t.z + delta_t.z;
}
}
else {
if ((intersection_t.y) < (intersection_t.z)) {
mask.y = 1;
voxel.y += voxel_step.y;
intersection_t.y = intersection_t.y + delta_t.y;
}
else {
mask.z = 1;
voxel.z += voxel_step.z;
intersection_t.z = intersection_t.z + delta_t.z;
}
}
// If the ray went out of bounds
sf::Vector3i overshoot = sf::Vector3i(
voxel.x <= map->getDimensions().x,
voxel.y <= map->getDimensions().y,
voxel.z <= map->getDimensions().z
);
sf::Vector3i undershoot = sf::Vector3i(
voxel.x > 0,
voxel.y > 0,
voxel.z > 0
);
if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0) {
blit_pixel(sf::Color::Yellow, sf::Vector2i{ pixel.x,pixel.y }, mask);
return;
}
if (undershoot.z == 0) {
blit_pixel(sf::Color::Yellow, sf::Vector2i{ pixel.x,pixel.y }, mask);
return;
}
// If we hit a voxel
//int index = voxel.x * (*map_dim).y * (*map_dim).z + voxel.z * (*map_dim).z + voxel.y;
// Why the off by one on voxel.y?
int index = voxel.x + map->getDimensions().x * (voxel.y + map->getDimensions().z * (voxel.z - 1));
int voxel_data = map->get_voxel_data()[index];
if (voxel_data != 0) {
switch (voxel_data) {
case 1:
blit_pixel(sf::Color::Green, sf::Vector2i{ pixel.x,pixel.y }, mask);
return;
case 2:
blit_pixel(sf::Color::Green, sf::Vector2i{ pixel.x,pixel.y }, mask);
return;
case 3:
blit_pixel(sf::Color::Green, sf::Vector2i{ pixel.x,pixel.y }, mask);
return;
case 4:
blit_pixel(sf::Color::Green, sf::Vector2i{ pixel.x,pixel.y }, mask);
return;
case 5:
blit_pixel(sf::Color(30, 10, 200, 100), sf::Vector2i{ pixel.x,pixel.y }, mask);
return;
case 6:
blit_pixel(sf::Color::Green, sf::Vector2i{ pixel.x,pixel.y }, mask);
return;
default:
//write_imagef(image, pixel, (float4)(.30, .2550, .2550, 255.00));
return;
}
}
dist++;
} while (dist < max_dist);
blit_pixel(sf::Color::Red, sf::Vector2i{ pixel.x,pixel.y }, mask);
return;
}
void Software_Caster::blit_pixel(sf::Color color, sf::Vector2i position, sf::Vector3i mask) {
sf::Color t = global_light(color, mask);
viewport_image[(position.x + viewport_resolution.x * position.y) * 4 + 0] = t.r;
viewport_image[(position.x + viewport_resolution.x * position.y) * 4 + 1] = t.g;
viewport_image[(position.x + viewport_resolution.x * position.y) * 4 + 2] = t.b;
viewport_image[(position.x + viewport_resolution.x * position.y) * 4 + 3] = t.a;
}
sf::Color Software_Caster::global_light(sf::Color in, sf::Vector3i mask) {
// I think I may scrap this whole software fallback caster thing
//sf::Vector3f mask_f(mask);
//in.a = in.a + (int)acos(
// DotProduct(
// Normalize(lights->at(0).direction_cartesian),
// Normalize(mask_f)
// )
// )/ 2;
return in;
}
Loading…
Cancel
Save