parent
3571bdcd61
commit
eb54125a64
@ -0,0 +1,112 @@
|
||||
#pragma once
|
||||
#include <RayCaster.h>
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
#include "util.hpp"
|
||||
#include <map>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
#ifdef linux
|
||||
#include <CL/cl.h>
|
||||
#include <CL/opencl.h>
|
||||
#include <GL/glx.h>
|
||||
|
||||
#elif defined _WIN32
|
||||
#include <CL/cl_gl.h>
|
||||
#include <CL/cl.h>
|
||||
#include <CL/opencl.h>
|
||||
|
||||
// Note: windows.h must be included before Gl/GL.h
|
||||
#include <windows.h>
|
||||
#include <GL/GL.h>
|
||||
|
||||
#elif defined TARGET_OS_MAC
|
||||
# include <OpenGL/OpenGL.h>
|
||||
# include <OpenCL/opencl.h>
|
||||
|
||||
#endif
|
||||
|
||||
struct device {
|
||||
cl_device_id id;
|
||||
cl_device_type type;
|
||||
cl_uint clock_frequency;
|
||||
char version[128];
|
||||
cl_platform_id platform;
|
||||
cl_uint comp_units;
|
||||
};
|
||||
|
||||
class Hardware_Caster : public RayCaster
|
||||
{
|
||||
public:
|
||||
Hardware_Caster();
|
||||
|
||||
virtual ~Hardware_Caster();
|
||||
|
||||
int init() override;
|
||||
|
||||
// In interop mode, this will create a GL texture that we share
|
||||
// Otherwise, it will create the pixel buffer and pass that in as an image, retrieving it each draw
|
||||
// Both will create the view matrix, view res buffer
|
||||
void create_viewport(int width, int height, float v_fov, float h_fov) override;
|
||||
|
||||
void assign_lights(std::vector<char> *data) override;
|
||||
void assign_map(Old_Map *map) override;
|
||||
void assign_camera(Camera *camera) override;
|
||||
void validate() override;
|
||||
|
||||
// TODO: Hoist this to the base class
|
||||
void create_texture_atlas(sf::Texture *t, sf::Vector2i tile_dim);
|
||||
|
||||
|
||||
// draw will abstract the gl sharing and software rendering
|
||||
// methods of retrieving the screen buffer
|
||||
void compute() override;
|
||||
void draw(sf::RenderWindow* window) override;
|
||||
|
||||
|
||||
int debug_quick_recompile();
|
||||
void test_edit_viewport(int width, int height, float v_fov, float h_fov);
|
||||
private:
|
||||
|
||||
|
||||
int acquire_platform_and_device();
|
||||
|
||||
int create_shared_context();
|
||||
|
||||
int create_command_queue();
|
||||
|
||||
int check_cl_khr_gl_sharing();
|
||||
|
||||
int create_image_buffer(std::string buffer_name, cl_uint size, sf::Texture* texture);
|
||||
int create_buffer(std::string buffer_name, cl_uint size, void* data);
|
||||
int create_buffer(std::string buffer_name, cl_uint size, void* data, cl_mem_flags flags);
|
||||
int store_buffer(cl_mem, std::string buffer_name);
|
||||
int release_buffer(std::string buffer_name);
|
||||
|
||||
int compile_kernel(std::string kernel_source, bool is_path, std::string kernel_name);
|
||||
|
||||
int set_kernel_arg(std::string kernel_name, int index, std::string buffer_name);
|
||||
|
||||
int run_kernel(std::string kernel_name, const int work_size);
|
||||
|
||||
void print_kernel_arguments();
|
||||
|
||||
bool assert(int error_code, std::string function_name);
|
||||
|
||||
cl_device_id getDeviceID();
|
||||
cl_platform_id getPlatformID();
|
||||
cl_context getContext();
|
||||
cl_kernel getKernel(std::string kernel_name);
|
||||
cl_command_queue getCommandQueue();
|
||||
|
||||
cl_platform_id platform_id;
|
||||
cl_device_id device_id;
|
||||
cl_context context;
|
||||
cl_command_queue command_queue;
|
||||
|
||||
std::map<std::string, cl_kernel> kernel_map;
|
||||
std::map<std::string, cl_mem> buffer_map;
|
||||
|
||||
};
|
||||
|
@ -0,0 +1,52 @@
|
||||
#pragma once
|
||||
#include <SFML/System/Vector3.hpp>
|
||||
#include <SFML/System/Vector2.hpp>
|
||||
#include <Map.h>
|
||||
#include "Old_Map.h"
|
||||
#include "Camera.h"
|
||||
#include "LightController.h"
|
||||
|
||||
class RayCaster {
|
||||
public:
|
||||
|
||||
enum ERROR_CODES {
|
||||
SHARING_NOT_SUPPORTED = 800,
|
||||
OPENCL_NOT_SUPPORTED = 801,
|
||||
OPENCL_ERROR = 802,
|
||||
ERR = 803
|
||||
};
|
||||
|
||||
RayCaster();
|
||||
virtual ~RayCaster();
|
||||
|
||||
virtual int init() = 0;
|
||||
|
||||
virtual void assign_map(Old_Map *map) = 0;
|
||||
virtual void assign_camera(Camera *camera) = 0;
|
||||
virtual void create_viewport(int width, int height, float v_fov, float h_fov) = 0;
|
||||
virtual void assign_lights(std::vector<char> *data) = 0;
|
||||
virtual void validate() = 0;
|
||||
|
||||
// draw will abstract the gl sharing and software rendering
|
||||
// methods of retrieving the screen buffer
|
||||
virtual void compute() = 0;
|
||||
virtual void draw(sf::RenderWindow* window) = 0;
|
||||
|
||||
protected:
|
||||
|
||||
sf::Sprite viewport_sprite;
|
||||
sf::Texture viewport_texture;
|
||||
|
||||
Old_Map * map = nullptr;
|
||||
Camera *camera = nullptr;
|
||||
// std::vector<LightController::PackedData> *lights;
|
||||
std::vector<char> *lights;
|
||||
int light_count = 0;
|
||||
sf::Uint8 *viewport_image = nullptr;
|
||||
sf::Vector4f *viewport_matrix = nullptr;
|
||||
sf::Vector2i viewport_resolution;
|
||||
|
||||
int error = 0;
|
||||
|
||||
};
|
||||
|
@ -0,0 +1,35 @@
|
||||
#include "RayCaster.h"
|
||||
#include <thread>
|
||||
|
||||
class Software_Caster : public RayCaster
|
||||
{
|
||||
public:
|
||||
Software_Caster();
|
||||
|
||||
virtual ~Software_Caster();
|
||||
|
||||
int init() override;
|
||||
|
||||
// In interop mode, this will create a GL texture that we share
|
||||
// Otherwise, it will create the pixel buffer and pass that in as an image, retrieving it each draw
|
||||
// Both will create the view matrix, view res buffer
|
||||
void create_viewport(int width, int height, float v_fov, float h_fov) override;
|
||||
|
||||
void assign_lights(std::vector<char> *data) override;
|
||||
void assign_map(Old_Map *map) override;
|
||||
void assign_camera(Camera *camera) override;
|
||||
void validate() override;
|
||||
|
||||
// draw will abstract the gl sharing and software rendering
|
||||
// methods of retrieving the screen buffer
|
||||
void compute() override;
|
||||
void draw(sf::RenderWindow* window) override;
|
||||
|
||||
private:
|
||||
|
||||
void cast_viewport();
|
||||
void cast_thread(int start_id, int end_id);
|
||||
void cast_ray(int id);
|
||||
void blit_pixel(sf::Color color, sf::Vector2i position, sf::Vector3i mask);
|
||||
sf::Color global_light(sf::Color in, sf::Vector3i mask);
|
||||
};
|
@ -0,0 +1,896 @@
|
||||
#include "Hardware_Caster.h"
|
||||
|
||||
|
||||
|
||||
Hardware_Caster::Hardware_Caster() {
|
||||
|
||||
}
|
||||
|
||||
|
||||
Hardware_Caster::~Hardware_Caster() {
|
||||
}
|
||||
|
||||
int Hardware_Caster::init() {
|
||||
|
||||
// Initialize opencl up to the point where we start assigning buffers
|
||||
|
||||
error = acquire_platform_and_device();
|
||||
if(assert(error, "aquire_platform_and_device"))
|
||||
return error;
|
||||
|
||||
error = check_cl_khr_gl_sharing();
|
||||
if(assert(error, "check_cl_khr_gl_sharing"))
|
||||
return error;
|
||||
|
||||
error = create_shared_context();
|
||||
if (assert(error, "create_shared_context"))
|
||||
return error;
|
||||
|
||||
error = create_command_queue();
|
||||
if (assert(error, "create_command_queue"))
|
||||
return error;
|
||||
|
||||
error = compile_kernel("../kernels/ray_caster_kernel.cl", true, "raycaster");
|
||||
if (assert(error, "compile_kernel")) {
|
||||
std::cin.get(); // hang the output window so we can read the error
|
||||
return error;
|
||||
}
|
||||
|
||||
srand(time(NULL));
|
||||
|
||||
int *seed_memory = new int[1920*1080];
|
||||
|
||||
create_buffer("seed", sizeof(int) * 1920 * 1080, seed_memory);
|
||||
|
||||
return 1;
|
||||
|
||||
}
|
||||
|
||||
void Hardware_Caster::assign_map(Old_Map *map) {
|
||||
|
||||
this->map = map;
|
||||
auto dimensions = map->getDimensions();
|
||||
|
||||
create_buffer("map", sizeof(char) * dimensions.x * dimensions.y * dimensions.z, map->get_voxel_data());
|
||||
create_buffer("map_dimensions", sizeof(int) * 3, &dimensions);
|
||||
|
||||
}
|
||||
|
||||
void Hardware_Caster::assign_camera(Camera *camera) {
|
||||
|
||||
this->camera = camera;
|
||||
|
||||
create_buffer("camera_direction", sizeof(float) * 4, (void*)camera->get_direction_pointer(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR);
|
||||
create_buffer("camera_position", sizeof(float) * 4, (void*)camera->get_position_pointer(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR);
|
||||
}
|
||||
|
||||
void Hardware_Caster::validate()
|
||||
{
|
||||
// Check to make sure everything has been entered;
|
||||
if (camera == nullptr ||
|
||||
map == nullptr ||
|
||||
viewport_image == nullptr ||
|
||||
viewport_matrix == nullptr) {
|
||||
|
||||
std::cout << "Raycaster.validate() failed, camera, map, or viewport not initialized";
|
||||
|
||||
} else {
|
||||
|
||||
// Set all the kernel args
|
||||
set_kernel_arg("raycaster", 0, "map");
|
||||
set_kernel_arg("raycaster", 1, "map_dimensions");
|
||||
set_kernel_arg("raycaster", 2, "viewport_resolution");
|
||||
set_kernel_arg("raycaster", 3, "viewport_matrix");
|
||||
set_kernel_arg("raycaster", 4, "camera_direction");
|
||||
set_kernel_arg("raycaster", 5, "camera_position");
|
||||
set_kernel_arg("raycaster", 6, "lights");
|
||||
set_kernel_arg("raycaster", 7, "light_count");
|
||||
set_kernel_arg("raycaster", 8, "image");
|
||||
set_kernel_arg("raycaster", 9, "seed");
|
||||
set_kernel_arg("raycaster", 10, "texture_atlas");
|
||||
set_kernel_arg("raycaster", 11, "atlas_dim");
|
||||
set_kernel_arg("raycaster", 12, "tile_dim");
|
||||
|
||||
//print_kernel_arguments();
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
void Hardware_Caster::create_texture_atlas(sf::Texture *t, sf::Vector2i tile_dim) {
|
||||
|
||||
create_image_buffer("texture_atlas", t->getSize().x * t->getSize().x * 4 * sizeof(float), t);
|
||||
|
||||
// create_buffer observes arg 3's
|
||||
|
||||
sf::Vector2u v = t->getSize();
|
||||
create_buffer("atlas_dim", sizeof(sf::Vector2u) , &v);
|
||||
|
||||
create_buffer("tile_dim", sizeof(sf::Vector2i), &tile_dim);
|
||||
}
|
||||
|
||||
void Hardware_Caster::compute()
|
||||
{
|
||||
// correlating work size with texture size? good, bad?
|
||||
run_kernel("raycaster", viewport_texture.getSize().x * viewport_texture.getSize().y);
|
||||
}
|
||||
|
||||
// There is a possibility that I would want to move this over to be all inside it's own
|
||||
// container to make it so it can be changed via CL_MEM_USE_HOST_PTR. But I doubt it
|
||||
// would ever be called enough to warrent that
|
||||
void Hardware_Caster::create_viewport(int width, int height, float v_fov, float h_fov) {
|
||||
|
||||
// CL needs the screen resolution
|
||||
sf::Vector2i view_res(width, height);
|
||||
create_buffer("viewport_resolution", sizeof(int) * 2, &view_res);
|
||||
|
||||
// And an array of vectors describing the way the "lens" of our
|
||||
// camera works
|
||||
|
||||
// This could be modified to make some odd looking camera lenses
|
||||
|
||||
double y_increment_radians = DegreesToRadians(v_fov / view_res.y);
|
||||
double x_increment_radians = DegreesToRadians(h_fov / view_res.x);
|
||||
|
||||
viewport_matrix = new sf::Vector4f[width * height * 4];
|
||||
|
||||
for (int y = -view_res.y / 2; y < view_res.y / 2; y++) {
|
||||
for (int x = -view_res.x / 2; x < view_res.x / 2; x++) {
|
||||
|
||||
// The base ray direction to slew from
|
||||
sf::Vector3f ray(1, 0, 0);
|
||||
|
||||
// Y axis, pitch
|
||||
ray = sf::Vector3f(
|
||||
static_cast<float>(ray.z * sin(y_increment_radians * y) + ray.x * cos(y_increment_radians * y)),
|
||||
static_cast<float>(ray.y),
|
||||
static_cast<float>(ray.z * cos(y_increment_radians * y) - ray.x * sin(y_increment_radians * y))
|
||||
);
|
||||
|
||||
// Z axis, yaw
|
||||
ray = sf::Vector3f(
|
||||
static_cast<float>(ray.x * cos(x_increment_radians * x) - ray.y * sin(x_increment_radians * x)),
|
||||
static_cast<float>(ray.x * sin(x_increment_radians * x) + ray.y * cos(x_increment_radians * x)),
|
||||
static_cast<float>(ray.z)
|
||||
);
|
||||
|
||||
// correct for the base ray pointing to (1, 0, 0) as (0, 0). Should equal (1.57, 0)
|
||||
ray = sf::Vector3f(
|
||||
static_cast<float>(ray.z * sin(-1.57) + ray.x * cos(-1.57)),
|
||||
static_cast<float>(ray.y),
|
||||
static_cast<float>(ray.z * cos(-1.57) - ray.x * sin(-1.57))
|
||||
);
|
||||
|
||||
int index = (x + view_res.x / 2) + view_res.x * (y + view_res.y / 2);
|
||||
ray = Normalize(ray);
|
||||
|
||||
viewport_matrix[index] = sf::Vector4f(
|
||||
ray.x,
|
||||
ray.y,
|
||||
ray.z,
|
||||
0
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
create_buffer("viewport_matrix", sizeof(float) * 4 * view_res.x * view_res.y, viewport_matrix, CL_MEM_USE_HOST_PTR);
|
||||
|
||||
// Create the image that opencl's rays write to
|
||||
viewport_image = new sf::Uint8[width * height * 4];
|
||||
|
||||
for (int i = 0; i < width * height * 4; i += 4) {
|
||||
|
||||
viewport_image[i] = 255; // R
|
||||
viewport_image[i + 1] = 255; // G
|
||||
viewport_image[i + 2] = 255; // B
|
||||
viewport_image[i + 3] = 100; // A
|
||||
}
|
||||
|
||||
// Interop lets us keep a reference to it as a texture
|
||||
viewport_texture.create(width, height);
|
||||
viewport_texture.update(viewport_image);
|
||||
viewport_sprite.setTexture(viewport_texture);
|
||||
|
||||
// Pass the buffer to opencl
|
||||
create_image_buffer("image", sizeof(sf::Uint8) * width * height * 4, &viewport_texture);
|
||||
|
||||
}
|
||||
|
||||
//void Hardware_Caster::assign_lights(std::vector<LightController> *lights) {
|
||||
//
|
||||
// //this->lights = ;
|
||||
//
|
||||
// std::cout << sizeof(LightController);
|
||||
// std::cout << sizeof(float);
|
||||
// light_count = static_cast<int>(lights->size());
|
||||
//
|
||||
// //create_buffer("lights", sizeof(float) * 10 * light_count, this->lights->data(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR);
|
||||
//
|
||||
// create_buffer("light_count", sizeof(int), &light_count);
|
||||
//
|
||||
//}
|
||||
|
||||
void Hardware_Caster::assign_lights(std::vector<char> *data) {
|
||||
|
||||
// Get a pointer to the packed light data
|
||||
// this->lights = data;
|
||||
|
||||
light_count = static_cast<int>(lights->size());
|
||||
|
||||
size_t packed_size = sizeof(LightController::PackedData);
|
||||
|
||||
create_buffer("lights", packed_size * light_count, lights->data(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR);
|
||||
|
||||
create_buffer("light_count", sizeof(int), &light_count);
|
||||
|
||||
}
|
||||
|
||||
void Hardware_Caster::draw(sf::RenderWindow* window) {
|
||||
window->draw(viewport_sprite);
|
||||
}
|
||||
|
||||
int Hardware_Caster::debug_quick_recompile()
|
||||
{
|
||||
int error = compile_kernel("../kernels/ray_caster_kernel.cl", true, "raycaster");
|
||||
if (assert(error, "compile_kernel")) {
|
||||
std::cin.get(); // hang the output window so we can read the error
|
||||
return error;
|
||||
}
|
||||
validate();
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
void Hardware_Caster::test_edit_viewport(int width, int height, float v_fov, float h_fov)
|
||||
{
|
||||
sf::Vector2i view_res(width, height);
|
||||
|
||||
double y_increment_radians = DegreesToRadians(v_fov / view_res.y);
|
||||
double x_increment_radians = DegreesToRadians(h_fov / view_res.x);
|
||||
|
||||
for (int y = -view_res.y / 2; y < view_res.y / 2; y++) {
|
||||
for (int x = -view_res.x / 2; x < view_res.x / 2; x++) {
|
||||
|
||||
// The base ray direction to slew from
|
||||
sf::Vector3f ray(1, 0, 0);
|
||||
|
||||
// Y axis, pitch
|
||||
ray = sf::Vector3f(
|
||||
static_cast<float>(ray.z * sin(y_increment_radians * y) + ray.x * cos(y_increment_radians * y)),
|
||||
static_cast<float>(ray.y),
|
||||
static_cast<float>(ray.z * cos(y_increment_radians * y) - ray.x * sin(y_increment_radians * y))
|
||||
);
|
||||
|
||||
// Z axis, yaw
|
||||
ray = sf::Vector3f(
|
||||
static_cast<float>(ray.x * cos(x_increment_radians * x) - ray.y * sin(x_increment_radians * x)),
|
||||
static_cast<float>(ray.x * sin(x_increment_radians * x) + ray.y * cos(x_increment_radians * x)),
|
||||
static_cast<float>(ray.z)
|
||||
);
|
||||
|
||||
// correct for the base ray pointing to (1, 0, 0) as (0, 0). Should equal (1.57, 0)
|
||||
ray = sf::Vector3f(
|
||||
static_cast<float>(ray.z * sin(-1.57) + ray.x * cos(-1.57)),
|
||||
static_cast<float>(ray.y),
|
||||
static_cast<float>(ray.z * cos(-1.57) - ray.x * sin(-1.57))
|
||||
);
|
||||
|
||||
int index = (x + view_res.x / 2) + view_res.x * (y + view_res.y / 2);
|
||||
ray = Normalize(ray);
|
||||
|
||||
viewport_matrix[index] = sf::Vector4f(
|
||||
ray.x,
|
||||
ray.y,
|
||||
ray.z,
|
||||
0
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int Hardware_Caster::acquire_platform_and_device() {
|
||||
|
||||
// Get the number of platforms
|
||||
cl_uint plt_cnt = 0;
|
||||
clGetPlatformIDs(0, nullptr, &plt_cnt);
|
||||
|
||||
// Fetch the platforms
|
||||
std::map<cl_platform_id, std::vector<device>> plt_ids;
|
||||
|
||||
// buffer before map init
|
||||
std::vector<cl_platform_id> plt_buf(plt_cnt);
|
||||
clGetPlatformIDs(plt_cnt, plt_buf.data(), nullptr);
|
||||
|
||||
// Map init
|
||||
for (auto id : plt_buf) {
|
||||
plt_ids.emplace(std::make_pair(id, std::vector<device>()));
|
||||
}
|
||||
|
||||
// For each platform, populate its devices
|
||||
for (unsigned int i = 0; i < plt_cnt; i++) {
|
||||
|
||||
cl_uint deviceIdCount = 0;
|
||||
error = clGetDeviceIDs(plt_buf[i], CL_DEVICE_TYPE_ALL, 0, nullptr, &deviceIdCount);
|
||||
|
||||
// Check to see if we even have opencl on this machine
|
||||
if (deviceIdCount == 0) {
|
||||
std::cout << "There appears to be no platforms supporting opencl" << std::endl;
|
||||
return OPENCL_NOT_SUPPORTED;
|
||||
}
|
||||
|
||||
// Get the device ids
|
||||
std::vector<cl_device_id> deviceIds(deviceIdCount);
|
||||
error = clGetDeviceIDs(plt_buf[i], CL_DEVICE_TYPE_ALL, deviceIdCount, deviceIds.data(), NULL);
|
||||
|
||||
if (assert(error, "clGetDeviceIDs"))
|
||||
return OPENCL_ERROR;
|
||||
|
||||
for (unsigned int q = 0; q < deviceIdCount; q++) {
|
||||
|
||||
device d;
|
||||
|
||||
d.id = deviceIds[q];
|
||||
|
||||
clGetDeviceInfo(d.id, CL_DEVICE_PLATFORM, sizeof(cl_platform_id), &d.platform, NULL);
|
||||
clGetDeviceInfo(d.id, CL_DEVICE_VERSION, sizeof(char) * 128, &d.version, NULL);
|
||||
clGetDeviceInfo(d.id, CL_DEVICE_TYPE, sizeof(cl_device_type), &d.type, NULL);
|
||||
clGetDeviceInfo(d.id, CL_DEVICE_MAX_CLOCK_FREQUENCY, sizeof(cl_uint), &d.clock_frequency, NULL);
|
||||
clGetDeviceInfo(d.id, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(cl_uint), &d.comp_units, NULL);
|
||||
|
||||
plt_ids.at(d.platform).push_back(d);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// The devices how now been queried we want to shoot for a gpu with the fastest clock,
|
||||
// falling back to the cpu with the fastest clock if we weren't able to find one
|
||||
|
||||
device current_best_device;
|
||||
current_best_device.type = 0; // Set this to 0 so the first run always selects a new device
|
||||
current_best_device.clock_frequency = 0;
|
||||
current_best_device.comp_units = 0;
|
||||
|
||||
|
||||
for (auto kvp : plt_ids) {
|
||||
|
||||
for (auto device : kvp.second) {
|
||||
|
||||
// Gonna just split this up into cases. There are so many devices I cant test with
|
||||
// that opencl supports. I'm not going to waste my time making a generic implimentation
|
||||
|
||||
// Upon success of a condition, set the current best device values
|
||||
|
||||
if (device.type == CL_DEVICE_TYPE_GPU && current_best_device.type != CL_DEVICE_TYPE_GPU) {
|
||||
current_best_device = device;
|
||||
}
|
||||
else if (device.comp_units > current_best_device.comp_units) {
|
||||
current_best_device = device;
|
||||
}
|
||||
else if (current_best_device.type != CL_DEVICE_TYPE_GPU && device.clock_frequency > current_best_device.clock_frequency) {
|
||||
current_best_device = device;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
platform_id = current_best_device.platform;
|
||||
device_id = current_best_device.id;
|
||||
|
||||
return 1;
|
||||
};
|
||||
|
||||
int Hardware_Caster::create_shared_context() {
|
||||
|
||||
// Hurray for standards!
|
||||
// Setup the context properties to grab the current GL context
|
||||
|
||||
#ifdef linux
|
||||
|
||||
cl_context_properties context_properties[] = {
|
||||
CL_GL_CONTEXT_KHR, (cl_context_properties)glXGetCurrentContext(),
|
||||
CL_GLX_DISPLAY_KHR, (cl_context_properties)glXGetCurrentDisplay(),
|
||||
CL_CONTEXT_PLATFORM, (cl_context_properties)platform_id,
|
||||
0
|
||||
};
|
||||
|
||||
#elif defined _WIN32
|
||||
|
||||
HGLRC hGLRC = wglGetCurrentContext();
|
||||
HDC hDC = wglGetCurrentDC();
|
||||
cl_context_properties context_properties[] = {
|
||||
CL_CONTEXT_PLATFORM, (cl_context_properties)platform_id,
|
||||
CL_GL_CONTEXT_KHR, (cl_context_properties)hGLRC,
|
||||
CL_WGL_HDC_KHR, (cl_context_properties)hDC,
|
||||
0
|
||||
};
|
||||
|
||||
|
||||
#elif defined TARGET_OS_MAC
|
||||
|
||||
CGLContextObj glContext = CGLGetCurrentContext();
|
||||
CGLShareGroupObj shareGroup = CGLGetShareGroup(glContext);
|
||||
cl_context_properties context_properties[] = {
|
||||
CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE,
|
||||
(cl_context_properties)shareGroup,
|
||||
0
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
// Create our shared context
|
||||
context = clCreateContext(
|
||||
context_properties,
|
||||
1,
|
||||
&device_id,
|
||||
nullptr, nullptr,
|
||||
&error
|
||||
);
|
||||
|
||||
if (assert(error, "clCreateContext"))
|
||||
return OPENCL_ERROR;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
int Hardware_Caster::create_command_queue() {
|
||||
|
||||
// If context and device_id have initialized
|
||||
if (context && device_id) {
|
||||
|
||||
command_queue = clCreateCommandQueue(context, device_id, 0, &error);
|
||||
|
||||
if (assert(error, "clCreateCommandQueue"))
|
||||
return OPENCL_ERROR;
|
||||
|
||||
return 1;
|
||||
}
|
||||
else {
|
||||
std::cout << "Failed creating the command queue. Context or device_id not initialized";
|
||||
return OPENCL_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
int Hardware_Caster::check_cl_khr_gl_sharing() {
|
||||
|
||||
// Test for sharing
|
||||
size_t ext_str_size = 1024;
|
||||
char *ext_str = new char[ext_str_size];
|
||||
clGetDeviceInfo(device_id, CL_DEVICE_EXTENSIONS, ext_str_size, ext_str, &ext_str_size);
|
||||
|
||||
if (std::string(ext_str).find("cl_khr_gl_sharing") == std::string::npos) {
|
||||
std::cout << "No support for the cl_khr_gl_sharing extension";
|
||||
delete ext_str;
|
||||
return RayCaster::SHARING_NOT_SUPPORTED;
|
||||
}
|
||||
|
||||
delete ext_str;
|
||||
return 1;
|
||||
}
|
||||
|
||||
int Hardware_Caster::compile_kernel(std::string kernel_source, bool is_path, std::string kernel_name) {
|
||||
|
||||
const char* source;
|
||||
std::string tmp;
|
||||
|
||||
if (is_path) {
|
||||
//Load in the kernel, and c stringify it
|
||||
tmp = read_file(kernel_source);
|
||||
source = tmp.c_str();
|
||||
}
|
||||
else {
|
||||
source = kernel_source.c_str();
|
||||
}
|
||||
|
||||
size_t kernel_source_size = strlen(source);
|
||||
|
||||
// Load the source into CL's data structure
|
||||
|
||||
cl_program program = clCreateProgramWithSource(
|
||||
context, 1,
|
||||
&source,
|
||||
&kernel_source_size, &error
|
||||
);
|
||||
|
||||
// This is not for compilation, it only loads the source
|
||||
if (assert(error, "clCreateProgramWithSource"))
|
||||
return OPENCL_ERROR;
|
||||
|
||||
|
||||
// Try and build the program
|
||||
error = clBuildProgram(program, 1, &device_id, NULL, NULL, NULL);
|
||||
|
||||
// Check to see if it errored out
|
||||
if (assert(error, "clBuildProgram")) {
|
||||
|
||||
// Get the size of the queued log
|
||||
size_t log_size;
|
||||
clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
|
||||
char *log = new char[log_size];
|
||||
|
||||
// Grab the log
|
||||
clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, log_size, log, NULL);
|
||||
|
||||
std::cout << log;
|
||||
return OPENCL_ERROR;
|
||||
}
|
||||
|
||||
// Done initializing the kernel
|
||||
cl_kernel kernel = clCreateKernel(program, kernel_name.c_str(), &error);
|
||||
|
||||
if (assert(error, "clCreateKernel"))
|
||||
return OPENCL_ERROR;
|
||||
|
||||
// Do I want these to overlap when repeated??
|
||||
kernel_map[kernel_name] = kernel;
|
||||
//kernel_map.emplace(std::make_pair(kernel_name, kernel));
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
int Hardware_Caster::set_kernel_arg(
|
||||
std::string kernel_name,
|
||||
int index,
|
||||
std::string buffer_name) {
|
||||
|
||||
error = clSetKernelArg(
|
||||
kernel_map.at(kernel_name),
|
||||
index,
|
||||
sizeof(cl_mem),
|
||||
(void *)&buffer_map.at(buffer_name));
|
||||
|
||||
if (assert(error, "clSetKernelArg"))
|
||||
return OPENCL_ERROR;
|
||||
|
||||
return 0;
|
||||
|
||||
}
|
||||
|
||||
int Hardware_Caster::create_image_buffer(std::string buffer_name, cl_uint size, sf::Texture* texture) {
|
||||
|
||||
// I can imagine overwriting buffers will be common, so I think
|
||||
// this is safe to overwrite / release old buffers quietly
|
||||
if (buffer_map.count(buffer_name) > 0) {
|
||||
release_buffer(buffer_name);
|
||||
}
|
||||
|
||||
int error;
|
||||
cl_mem buff = clCreateFromGLTexture(
|
||||
getContext(), CL_MEM_WRITE_ONLY, GL_TEXTURE_2D,
|
||||
0, texture->getNativeHandle(), &error);
|
||||
|
||||
if (assert(error, "clCreateFromGLTexture"))
|
||||
return OPENCL_ERROR;
|
||||
|
||||
store_buffer(buff, buffer_name);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
int Hardware_Caster::create_buffer(std::string buffer_name, cl_uint size, void* data, cl_mem_flags flags) {
|
||||
|
||||
// I can imagine overwriting buffers will be common, so I think
|
||||
// this is safe to overwrite / release old buffers quietly
|
||||
if (buffer_map.count(buffer_name) > 0) {
|
||||
release_buffer(buffer_name);
|
||||
}
|
||||
|
||||
cl_mem buff = clCreateBuffer(
|
||||
getContext(), flags,
|
||||
size, data, &error
|
||||
);
|
||||
|
||||
if (assert(error, "clCreateBuffer"))
|
||||
return OPENCL_ERROR;
|
||||
|
||||
store_buffer(buff, buffer_name);
|
||||
|
||||
return 1;
|
||||
|
||||
}
|
||||
|
||||
int Hardware_Caster::create_buffer(std::string buffer_name, cl_uint size, void* data) {
|
||||
|
||||
// I can imagine overwriting buffers will be common, so I think
|
||||
// this is safe to overwrite / release old buffers quietly
|
||||
if (buffer_map.count(buffer_name) > 0) {
|
||||
release_buffer(buffer_name);
|
||||
}
|
||||
|
||||
cl_mem buff = clCreateBuffer(
|
||||
getContext(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
|
||||
size, data, &error
|
||||
);
|
||||
|
||||
if (assert(error, "clCreateBuffer"))
|
||||
return OPENCL_ERROR;
|
||||
|
||||
store_buffer(buff, buffer_name);
|
||||
|
||||
return 1;
|
||||
|
||||
}
|
||||
|
||||
int Hardware_Caster::release_buffer(std::string buffer_name) {
|
||||
|
||||
if (buffer_map.count(buffer_name) > 0) {
|
||||
|
||||
int error = clReleaseMemObject(buffer_map.at(buffer_name));
|
||||
|
||||
if (assert(error, "clReleaseMemObject")) {
|
||||
std::cout << "Error releasing buffer : " << buffer_name;
|
||||
std::cout << "Buffer not removed";
|
||||
return -1;
|
||||
|
||||
} else {
|
||||
buffer_map.erase(buffer_name);
|
||||
}
|
||||
|
||||
} else {
|
||||
std::cout << "Error releasing buffer : " << buffer_name;
|
||||
std::cout << "Buffer not found";
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 1;
|
||||
|
||||
}
|
||||
|
||||
int Hardware_Caster::store_buffer(cl_mem buffer, std::string buffer_name) {
|
||||
buffer_map.emplace(std::make_pair(buffer_name, buffer));
|
||||
return 1;
|
||||
}
|
||||
|
||||
int Hardware_Caster::run_kernel(std::string kernel_name, const int work_size) {
|
||||
|
||||
size_t global_work_size[1] = { static_cast<size_t>(work_size) };
|
||||
|
||||
cl_kernel kernel = kernel_map.at(kernel_name);
|
||||
|
||||
error = clEnqueueAcquireGLObjects(getCommandQueue(), 1, &buffer_map.at("image"), 0, 0, 0);
|
||||
if (assert(error, "clEnqueueAcquireGLObjects"))
|
||||
return OPENCL_ERROR;
|
||||
|
||||
//error = clEnqueueTask(command_queue, kernel, 0, NULL, NULL);
|
||||
error = clEnqueueNDRangeKernel(
|
||||
command_queue, kernel,
|
||||
1, NULL, global_work_size,
|
||||
NULL, 0, NULL, NULL);
|
||||
|
||||
if (assert(error, "clEnqueueNDRangeKernel"))
|
||||
return OPENCL_ERROR;
|
||||
|
||||
clFinish(getCommandQueue());
|
||||
|
||||
// What if errors out and gl objects are never released?
|
||||
error = clEnqueueReleaseGLObjects(getCommandQueue(), 1, &buffer_map.at("image"), 0, NULL, NULL);
|
||||
if (assert(error, "clEnqueueReleaseGLObjects"))
|
||||
return OPENCL_ERROR;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
void Hardware_Caster::print_kernel_arguments()
|
||||
{
|
||||
compile_kernel("../kernels/print_arguments.cl", true, "printer");
|
||||
set_kernel_arg("printer", 0, "map");
|
||||
set_kernel_arg("printer", 1, "map_dimensions");
|
||||
set_kernel_arg("printer", 2, "viewport_resolution");
|
||||
set_kernel_arg("printer", 3, "viewport_matrix");
|
||||
set_kernel_arg("printer", 4, "camera_direction");
|
||||
set_kernel_arg("printer", 5, "camera_position");
|
||||
set_kernel_arg("printer", 6, "lights");
|
||||
set_kernel_arg("printer", 7, "light_count");
|
||||
set_kernel_arg("printer", 8, "image");
|
||||
|
||||
run_kernel("printer", 1);
|
||||
}
|
||||
|
||||
cl_device_id Hardware_Caster::getDeviceID() { return device_id; };
|
||||
cl_platform_id Hardware_Caster::getPlatformID() { return platform_id; };
|
||||
cl_context Hardware_Caster::getContext() { return context; };
|
||||
cl_kernel Hardware_Caster::getKernel(std::string kernel_name) { return kernel_map.at(kernel_name); };
|
||||
cl_command_queue Hardware_Caster::getCommandQueue() { return command_queue; };
|
||||
|
||||
bool Hardware_Caster::assert(int error_code, std::string function_name) {
|
||||
|
||||
// Just gonna do a little jump table here, just error codes so who cares
|
||||
std::string err_msg = "Error : ";
|
||||
|
||||
switch (error_code) {
|
||||
|
||||
case CL_SUCCESS:
|
||||
return false;
|
||||
|
||||
case 1:
|
||||
return false;
|
||||
|
||||
case CL_DEVICE_NOT_FOUND:
|
||||
err_msg += "CL_DEVICE_NOT_FOUND";
|
||||
break;
|
||||
case CL_DEVICE_NOT_AVAILABLE:
|
||||
err_msg = "CL_DEVICE_NOT_AVAILABLE";
|
||||
break;
|
||||
case CL_COMPILER_NOT_AVAILABLE:
|
||||
err_msg = "CL_COMPILER_NOT_AVAILABLE";
|
||||
break;
|
||||
case CL_MEM_OBJECT_ALLOCATION_FAILURE:
|
||||
err_msg = "CL_MEM_OBJECT_ALLOCATION_FAILURE";
|
||||
break;
|
||||
case CL_OUT_OF_RESOURCES:
|
||||
err_msg = "CL_OUT_OF_RESOURCES";
|
||||
break;
|
||||
case CL_OUT_OF_HOST_MEMORY:
|
||||
err_msg = "CL_OUT_OF_HOST_MEMORY";
|
||||
break;
|
||||
case CL_PROFILING_INFO_NOT_AVAILABLE:
|
||||
err_msg = "CL_PROFILING_INFO_NOT_AVAILABLE";
|
||||
break;
|
||||
case CL_MEM_COPY_OVERLAP:
|
||||
err_msg = "CL_MEM_COPY_OVERLAP";
|
||||
break;
|
||||
case CL_IMAGE_FORMAT_MISMATCH:
|
||||
err_msg = "CL_IMAGE_FORMAT_MISMATCH";
|
||||
break;
|
||||
case CL_IMAGE_FORMAT_NOT_SUPPORTED:
|
||||
err_msg = "CL_IMAGE_FORMAT_NOT_SUPPORTED";
|
||||
break;
|
||||
case CL_BUILD_PROGRAM_FAILURE:
|
||||
err_msg = "CL_BUILD_PROGRAM_FAILURE";
|
||||
break;
|
||||
case CL_MAP_FAILURE:
|
||||
err_msg = "CL_MAP_FAILURE";
|
||||
break;
|
||||
case CL_MISALIGNED_SUB_BUFFER_OFFSET:
|
||||
err_msg = "CL_MISALIGNED_SUB_BUFFER_OFFSET";
|
||||
break;
|
||||
case CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST:
|
||||
err_msg = "CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST";
|
||||
break;
|
||||
case CL_COMPILE_PROGRAM_FAILURE:
|
||||
err_msg = "CL_COMPILE_PROGRAM_FAILURE";
|
||||
break;
|
||||
case CL_LINKER_NOT_AVAILABLE:
|
||||
err_msg = "CL_LINKER_NOT_AVAILABLE";
|
||||
break;
|
||||
case CL_LINK_PROGRAM_FAILURE:
|
||||
err_msg = "CL_LINK_PROGRAM_FAILURE";
|
||||
break;
|
||||
case CL_DEVICE_PARTITION_FAILED:
|
||||
err_msg = "CL_DEVICE_PARTITION_FAILED";
|
||||
break;
|
||||
case CL_KERNEL_ARG_INFO_NOT_AVAILABLE:
|
||||
err_msg = "CL_KERNEL_ARG_INFO_NOT_AVAILABLE";
|
||||
break;
|
||||
case CL_INVALID_VALUE:
|
||||
err_msg = "CL_INVALID_VALUE";
|
||||
break;
|
||||
case CL_INVALID_DEVICE_TYPE:
|
||||
err_msg = "CL_INVALID_DEVICE_TYPE";
|
||||
break;
|
||||
case CL_INVALID_PLATFORM:
|
||||
err_msg = "CL_INVALID_PLATFORM";
|
||||
break;
|
||||
case CL_INVALID_DEVICE:
|
||||
err_msg = "CL_INVALID_DEVICE";
|
||||
break;
|
||||
case CL_INVALID_CONTEXT:
|
||||
err_msg = "CL_INVALID_CONTEXT";
|
||||
break;
|
||||
case CL_INVALID_QUEUE_PROPERTIES:
|
||||
err_msg = "CL_INVALID_QUEUE_PROPERTIES";
|
||||
break;
|
||||
case CL_INVALID_COMMAND_QUEUE:
|
||||
err_msg = "CL_INVALID_COMMAND_QUEUE";
|
||||
break;
|
||||
case CL_INVALID_HOST_PTR:
|
||||
err_msg = "CL_INVALID_HOST_PTR";
|
||||
break;
|
||||
case CL_INVALID_MEM_OBJECT:
|
||||
err_msg = "CL_INVALID_MEM_OBJECT";
|
||||
break;
|
||||
case CL_INVALID_IMAGE_FORMAT_DESCRIPTOR:
|
||||
err_msg = "CL_INVALID_IMAGE_FORMAT_DESCRIPTOR";
|
||||
break;
|
||||
case CL_INVALID_IMAGE_SIZE:
|
||||
err_msg = "CL_INVALID_IMAGE_SIZE";
|
||||
break;
|
||||
case CL_INVALID_SAMPLER:
|
||||
err_msg = "CL_INVALID_SAMPLER";
|
||||
break;
|
||||
case CL_INVALID_BINARY:
|
||||
err_msg = "CL_INVALID_BINARY";
|
||||
break;
|
||||
case CL_INVALID_BUILD_OPTIONS:
|
||||
err_msg = "CL_INVALID_BUILD_OPTIONS";
|
||||
break;
|
||||
case CL_INVALID_PROGRAM:
|
||||
err_msg = "CL_INVALID_PROGRAM";
|
||||
break;
|
||||
case CL_INVALID_PROGRAM_EXECUTABLE:
|
||||
err_msg = "CL_INVALID_PROGRAM_EXECUTABLE";
|
||||
break;
|
||||
case CL_INVALID_KERNEL_NAME:
|
||||
err_msg = "CL_INVALID_KERNEL_NAME";
|
||||
break;
|
||||
case CL_INVALID_KERNEL_DEFINITION:
|
||||
err_msg = "CL_INVALID_KERNEL_DEFINITION";
|
||||
break;
|
||||
case CL_INVALID_KERNEL:
|
||||
err_msg = "CL_INVALID_KERNEL";
|
||||
break;
|
||||
case CL_INVALID_ARG_INDEX:
|
||||
err_msg = "CL_INVALID_ARG_INDEX";
|
||||
break;
|
||||
case CL_INVALID_ARG_VALUE:
|
||||
err_msg = "CL_INVALID_ARG_VALUE";
|
||||
break;
|
||||
case CL_INVALID_ARG_SIZE:
|
||||
err_msg = "CL_INVALID_ARG_SIZE";
|
||||
break;
|
||||
case CL_INVALID_KERNEL_ARGS:
|
||||
err_msg = "CL_INVALID_KERNEL_ARGS";
|
||||
break;
|
||||
case CL_INVALID_WORK_DIMENSION:
|
||||
err_msg = "CL_INVALID_WORK_DIMENSION";
|
||||
break;
|
||||
case CL_INVALID_WORK_GROUP_SIZE:
|
||||
err_msg = "CL_INVALID_WORK_GROUP_SIZE";
|
||||
break;
|
||||
case CL_INVALID_WORK_ITEM_SIZE:
|
||||
err_msg = "CL_INVALID_WORK_ITEM_SIZE";
|
||||
break;
|
||||
case CL_INVALID_GLOBAL_OFFSET:
|
||||
err_msg = "CL_INVALID_GLOBAL_OFFSET";
|
||||
break;
|
||||
case CL_INVALID_EVENT_WAIT_LIST:
|
||||
err_msg = "CL_INVALID_EVENT_WAIT_LIST";
|
||||
break;
|
||||
case CL_INVALID_EVENT:
|
||||
err_msg = "CL_INVALID_EVENT";
|
||||
break;
|
||||
case CL_INVALID_OPERATION:
|
||||
err_msg = "CL_INVALID_OPERATION";
|
||||
break;
|
||||
case CL_INVALID_GL_OBJECT:
|
||||
err_msg = "CL_INVALID_GL_OBJECT";
|
||||
break;
|
||||
case CL_INVALID_BUFFER_SIZE:
|
||||
err_msg = "CL_INVALID_BUFFER_SIZE";
|
||||
break;
|
||||
case CL_INVALID_MIP_LEVEL:
|
||||
err_msg = "CL_INVALID_MIP_LEVEL";
|
||||
break;
|
||||
case CL_INVALID_GLOBAL_WORK_SIZE:
|
||||
err_msg = "CL_INVALID_GLOBAL_WORK_SIZE";
|
||||
break;
|
||||
case CL_INVALID_PROPERTY:
|
||||
err_msg = "CL_INVALID_PROPERTY";
|
||||
break;
|
||||
case CL_INVALID_IMAGE_DESCRIPTOR:
|
||||
err_msg = "CL_INVALID_IMAGE_DESCRIPTOR";
|
||||
break;
|
||||
case CL_INVALID_COMPILER_OPTIONS:
|
||||
err_msg = "CL_INVALID_COMPILER_OPTIONS";
|
||||
break;
|
||||
case CL_INVALID_LINKER_OPTIONS:
|
||||
err_msg = "CL_INVALID_LINKER_OPTIONS";
|
||||
break;
|
||||
case CL_INVALID_DEVICE_PARTITION_COUNT:
|
||||
err_msg = "CL_INVALID_DEVICE_PARTITION_COUNT";
|
||||
break;
|
||||
case RayCaster::SHARING_NOT_SUPPORTED:
|
||||
err_msg = "SHARING_NOT_SUPPORTED";
|
||||
break;
|
||||
case RayCaster::OPENCL_NOT_SUPPORTED:
|
||||
err_msg = "OPENCL_NOT_SUPPORTED";
|
||||
break;
|
||||
case RayCaster::OPENCL_ERROR:
|
||||
err_msg = "OPENCL_ERROR";
|
||||
break;
|
||||
case RayCaster::ERR:
|
||||
err_msg = "ERROR";
|
||||
break;
|
||||
}
|
||||
|
||||
std::cout << err_msg << " =at= " << function_name << std::endl;
|
||||
return true;
|
||||
}
|
@ -0,0 +1,7 @@
|
||||
#include "RayCaster.h"
|
||||
|
||||
RayCaster::RayCaster() {
|
||||
}
|
||||
|
||||
RayCaster::~RayCaster() {
|
||||
}
|
@ -0,0 +1,343 @@
|
||||
#include "Software_Caster.h"
|
||||
|
||||
|
||||
|
||||
Software_Caster::Software_Caster()
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
Software_Caster::~Software_Caster()
|
||||
{
|
||||
}
|
||||
|
||||
int Software_Caster::init()
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
void Software_Caster::create_viewport(int width, int height, float v_fov, float h_fov)
|
||||
{
|
||||
// CL needs the screen resolution
|
||||
viewport_resolution = sf::Vector2i(width, height);
|
||||
|
||||
// And an array of vectors describing the way the "lens" of our
|
||||
// camera works
|
||||
// This could be modified to make some odd looking camera lenses
|
||||
|
||||
double y_increment_radians = DegreesToRadians(v_fov / viewport_resolution.y);
|
||||
double x_increment_radians = DegreesToRadians(h_fov / viewport_resolution.x);
|
||||
|
||||
viewport_matrix = new sf::Vector4f[width * height * 4];
|
||||
|
||||
for (int y = -viewport_resolution.y / 2; y < viewport_resolution.y / 2; y++) {
|
||||
for (int x = -viewport_resolution.x / 2; x < viewport_resolution.x / 2; x++) {
|
||||
|
||||
// The base ray direction to slew from
|
||||
sf::Vector3f ray(1, 0, 0);
|
||||
|
||||
// Y axis, pitch
|
||||
ray = sf::Vector3f(
|
||||
static_cast<float>(ray.z * sin(y_increment_radians * y) + ray.x * cos(y_increment_radians * y)),
|
||||
static_cast<float>(ray.y),
|
||||
static_cast<float>(ray.z * cos(y_increment_radians * y) - ray.x * sin(y_increment_radians * y))
|
||||
);
|
||||
|
||||
|
||||
// Z axis, yaw
|
||||
ray = sf::Vector3f(
|
||||
static_cast<float>(ray.x * cos(x_increment_radians * x) - ray.y * sin(x_increment_radians * x)),
|
||||
static_cast<float>(ray.x * sin(x_increment_radians * x) + ray.y * cos(x_increment_radians * x)),
|
||||
static_cast<float>(ray.z)
|
||||
);
|
||||
|
||||
int index = (x + viewport_resolution.x / 2) + viewport_resolution.x * (y + viewport_resolution.y / 2);
|
||||
ray = Normalize(ray);
|
||||
|
||||
viewport_matrix[index] = sf::Vector4f(
|
||||
ray.x,
|
||||
ray.y,
|
||||
ray.z,
|
||||
0
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// Create the image that opencl's rays write to
|
||||
viewport_image = new sf::Uint8[width * height * 4];
|
||||
|
||||
for (int i = 0; i < width * height * 4; i += 4) {
|
||||
|
||||
viewport_image[i] = 255; // R
|
||||
viewport_image[i + 1] = 255; // G
|
||||
viewport_image[i + 2] = 255; // B
|
||||
viewport_image[i + 3] = 255; // A
|
||||
}
|
||||
|
||||
// Interop lets us keep a reference to it as a texture
|
||||
viewport_texture.create(width, height);
|
||||
viewport_texture.update(viewport_image);
|
||||
viewport_sprite.setTexture(viewport_texture);
|
||||
|
||||
|
||||
}
|
||||
|
||||
void Software_Caster::assign_lights(std::vector<char> *data) {
|
||||
|
||||
// this->lights = data;
|
||||
|
||||
int light_count = static_cast<int>(data->size());
|
||||
}
|
||||
|
||||
void Software_Caster::assign_map(Old_Map * map) {
|
||||
this->map = map;
|
||||
}
|
||||
|
||||
void Software_Caster::assign_camera(Camera * camera) {
|
||||
this->camera = camera;
|
||||
}
|
||||
|
||||
void Software_Caster::validate() {
|
||||
// Check to make sure everything has been entered;
|
||||
if (camera == nullptr ||
|
||||
map == nullptr ||
|
||||
viewport_image == nullptr ||
|
||||
viewport_matrix == nullptr) {
|
||||
|
||||
std::cout << "Raycaster.validate() failed, camera, map, or viewport not initialized";
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void Software_Caster::compute() {
|
||||
cast_viewport();
|
||||
}
|
||||
|
||||
void Software_Caster::draw(sf::RenderWindow * window) {
|
||||
viewport_texture.update(viewport_image);
|
||||
window->draw(viewport_sprite);
|
||||
}
|
||||
|
||||
void Software_Caster::cast_viewport() {
|
||||
|
||||
std::vector<std::thread*> threads;
|
||||
for (int i = 0; i < 13; i++) {
|
||||
int s = viewport_resolution.x * ((viewport_resolution.y / 13) * i);
|
||||
int e = viewport_resolution.x * ((viewport_resolution.y / 13) * (i + 1));
|
||||
threads.push_back(new std::thread(&Software_Caster::cast_thread, this, s, e));
|
||||
}
|
||||
|
||||
for (auto i : threads) {
|
||||
i->join();
|
||||
delete i;
|
||||
}
|
||||
}
|
||||
|
||||
void Software_Caster::cast_thread(int start_id, int end_id) {
|
||||
|
||||
for (int i = start_id; i < end_id; i++) {
|
||||
cast_ray(i);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Software_Caster::cast_ray(int id)
|
||||
{
|
||||
sf::Vector2i pixel = { id % viewport_resolution.x, id / viewport_resolution.x };
|
||||
|
||||
// 4f 3f ??
|
||||
sf::Vector4f ray_dir = viewport_matrix[pixel.x + viewport_resolution.x * pixel.y];
|
||||
|
||||
ray_dir = sf::Vector4f(
|
||||
ray_dir.z * sin(camera->get_direction().x) + ray_dir.x * cos(camera->get_direction().x),
|
||||
ray_dir.y,
|
||||
ray_dir.z * cos(camera->get_direction().x) - ray_dir.x * sin(camera->get_direction().x),
|
||||
0
|
||||
);
|
||||
|
||||
ray_dir = sf::Vector4f(
|
||||
ray_dir.x * cos(camera->get_direction().y) - ray_dir.y * sin(camera->get_direction().y),
|
||||
ray_dir.x * sin(camera->get_direction().y) + ray_dir.y * cos(camera->get_direction().y),
|
||||
ray_dir.z,
|
||||
0
|
||||
);
|
||||
|
||||
// Setup the voxel step based on what direction the ray is pointing
|
||||
sf::Vector3i voxel_step = sf::Vector3i(
|
||||
static_cast<int>(1 * (abs(ray_dir.x) / ray_dir.x)),
|
||||
static_cast<int>(1 * (abs(ray_dir.y) / ray_dir.y)),
|
||||
static_cast<int>(1 * (abs(ray_dir.z) / ray_dir.z))
|
||||
);
|
||||
|
||||
// Setup the voxel coords from the camera origin
|
||||
sf::Vector3i voxel = sf::Vector3i(
|
||||
static_cast<int>(camera->get_position().x),
|
||||
static_cast<int>(camera->get_position().y),
|
||||
static_cast<int>(camera->get_position().z)
|
||||
);
|
||||
|
||||
// Delta T is the units a ray must travel along an axis in order to
|
||||
// traverse an integer split
|
||||
sf::Vector3f delta_t = sf::Vector3f(
|
||||
fabs(1.0f / ray_dir.x),
|
||||
fabs(1.0f / ray_dir.y),
|
||||
fabs(1.0f / ray_dir.z)
|
||||
);
|
||||
|
||||
// offset is how far we are into a voxel, enables sub voxel movement
|
||||
sf::Vector3f offset = sf::Vector3f(
|
||||
(camera->get_position().x - floor(camera->get_position().x)) * voxel_step.x,
|
||||
(camera->get_position().y - floor(camera->get_position().y)) * voxel_step.y,
|
||||
(camera->get_position().z - floor(camera->get_position().z)) * voxel_step.z
|
||||
);
|
||||
|
||||
// Intersection T is the collection of the next intersection points
|
||||
// for all 3 axis XYZ.
|
||||
sf::Vector3f intersection_t = sf::Vector3f(
|
||||
delta_t.x * offset.x,
|
||||
delta_t.y * offset.y,
|
||||
delta_t.z * offset.z
|
||||
);
|
||||
|
||||
// for negative values, wrap around the delta_t, rather not do this
|
||||
// component wise, but it doesn't appear to want to work
|
||||
if (intersection_t.x < 0) {
|
||||
intersection_t.x += delta_t.x;
|
||||
}
|
||||
if (intersection_t.y < 0) {
|
||||
intersection_t.y += delta_t.y;
|
||||
}
|
||||
if (intersection_t.z < 0) {
|
||||
intersection_t.z += delta_t.z;
|
||||
}
|
||||
|
||||
// use a ghetto ass rng to give rays a "fog" appearance
|
||||
sf::Vector2i randoms = { 3, 14 };
|
||||
int seed = randoms.x + id;
|
||||
int t = seed ^ (seed << 11);
|
||||
int result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8));
|
||||
|
||||
int max_dist = 800 + result % 50;
|
||||
int dist = 0;
|
||||
|
||||
sf::Vector3i mask = { 0, 0, 0 };
|
||||
|
||||
// Andrew Woo's raycasting algo
|
||||
do {
|
||||
|
||||
if ((intersection_t.x) < (intersection_t.y)) {
|
||||
if ((intersection_t.x) < (intersection_t.z)) {
|
||||
|
||||
mask.x = 1;
|
||||
voxel.x += voxel_step.x;
|
||||
intersection_t.x = intersection_t.x + delta_t.x;
|
||||
}
|
||||
else {
|
||||
|
||||
mask.z = 1;
|
||||
voxel.z += voxel_step.z;
|
||||
intersection_t.z = intersection_t.z + delta_t.z;
|
||||
}
|
||||
}
|
||||
else {
|
||||
if ((intersection_t.y) < (intersection_t.z)) {
|
||||
|
||||
mask.y = 1;
|
||||
voxel.y += voxel_step.y;
|
||||
intersection_t.y = intersection_t.y + delta_t.y;
|
||||
}
|
||||
else {
|
||||
|
||||
mask.z = 1;
|
||||
voxel.z += voxel_step.z;
|
||||
intersection_t.z = intersection_t.z + delta_t.z;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// If the ray went out of bounds
|
||||
sf::Vector3i overshoot = sf::Vector3i(
|
||||
voxel.x <= map->getDimensions().x,
|
||||
voxel.y <= map->getDimensions().y,
|
||||
voxel.z <= map->getDimensions().z
|
||||
);
|
||||
|
||||
sf::Vector3i undershoot = sf::Vector3i(
|
||||
voxel.x > 0,
|
||||
voxel.y > 0,
|
||||
voxel.z > 0
|
||||
);
|
||||
|
||||
if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0) {
|
||||
blit_pixel(sf::Color::Yellow, sf::Vector2i{ pixel.x,pixel.y }, mask);
|
||||
return;
|
||||
}
|
||||
if (undershoot.z == 0) {
|
||||
blit_pixel(sf::Color::Yellow, sf::Vector2i{ pixel.x,pixel.y }, mask);
|
||||
return;
|
||||
}
|
||||
|
||||
// If we hit a voxel
|
||||
//int index = voxel.x * (*map_dim).y * (*map_dim).z + voxel.z * (*map_dim).z + voxel.y;
|
||||
// Why the off by one on voxel.y?
|
||||
int index = voxel.x + map->getDimensions().x * (voxel.y + map->getDimensions().z * (voxel.z - 1));
|
||||
int voxel_data = map->get_voxel_data()[index];
|
||||
|
||||
if (voxel_data != 0) {
|
||||
switch (voxel_data) {
|
||||
case 1:
|
||||
blit_pixel(sf::Color::Green, sf::Vector2i{ pixel.x,pixel.y }, mask);
|
||||
return;
|
||||
case 2:
|
||||
blit_pixel(sf::Color::Green, sf::Vector2i{ pixel.x,pixel.y }, mask);
|
||||
return;
|
||||
case 3:
|
||||
blit_pixel(sf::Color::Green, sf::Vector2i{ pixel.x,pixel.y }, mask);
|
||||
return;
|
||||
case 4:
|
||||
blit_pixel(sf::Color::Green, sf::Vector2i{ pixel.x,pixel.y }, mask);
|
||||
return;
|
||||
case 5:
|
||||
blit_pixel(sf::Color(30, 10, 200, 100), sf::Vector2i{ pixel.x,pixel.y }, mask);
|
||||
return;
|
||||
case 6:
|
||||
blit_pixel(sf::Color::Green, sf::Vector2i{ pixel.x,pixel.y }, mask);
|
||||
return;
|
||||
default:
|
||||
//write_imagef(image, pixel, (float4)(.30, .2550, .2550, 255.00));
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
dist++;
|
||||
} while (dist < max_dist);
|
||||
|
||||
blit_pixel(sf::Color::Red, sf::Vector2i{ pixel.x,pixel.y }, mask);
|
||||
return;
|
||||
}
|
||||
|
||||
void Software_Caster::blit_pixel(sf::Color color, sf::Vector2i position, sf::Vector3i mask) {
|
||||
|
||||
sf::Color t = global_light(color, mask);
|
||||
viewport_image[(position.x + viewport_resolution.x * position.y) * 4 + 0] = t.r;
|
||||
viewport_image[(position.x + viewport_resolution.x * position.y) * 4 + 1] = t.g;
|
||||
viewport_image[(position.x + viewport_resolution.x * position.y) * 4 + 2] = t.b;
|
||||
viewport_image[(position.x + viewport_resolution.x * position.y) * 4 + 3] = t.a;
|
||||
}
|
||||
|
||||
sf::Color Software_Caster::global_light(sf::Color in, sf::Vector3i mask) {
|
||||
|
||||
// I think I may scrap this whole software fallback caster thing
|
||||
|
||||
//sf::Vector3f mask_f(mask);
|
||||
|
||||
//in.a = in.a + (int)acos(
|
||||
// DotProduct(
|
||||
// Normalize(lights->at(0).direction_cartesian),
|
||||
// Normalize(mask_f)
|
||||
// )
|
||||
// )/ 2;
|
||||
|
||||
return in;
|
||||
|
||||
}
|
Loading…
Reference in new issue