uint4 white_light(uint4 input, float3 light, int3 mask) { input.w = input.w + acos( dot( normalize(light), normalize(fabs(convert_float3(mask))) ) ) * 50; return (input); } __kernel void min_kern( global char* map, global int3* map_dim, global int2* resolution, global float3* projection_matrix, global float3* cam_dir, global float3* cam_pos, global float* lights, global int* light_count, __write_only image2d_t image ){ // Get the pixel position of this worker size_t id = get_global_id(0); int2 pixel = {id % resolution->x, id / resolution->x}; // Slew the ray into it's correct position based on the view matrix's starting position // and the camera's current direction float3 ray_dir = projection_matrix[pixel.x + resolution->x * pixel.y]; // Yaw ray_dir = (float3)( ray_dir.z * sin(cam_dir->y) + ray_dir.x * cos(cam_dir->y), ray_dir.y, ray_dir.z * cos(cam_dir->y) - ray_dir.x * sin(cam_dir->y) ); // Pitch ray_dir = (float3)( ray_dir.x * cos(cam_dir->z) - ray_dir.y * sin(cam_dir->z), ray_dir.x * sin(cam_dir->z) + ray_dir.y * cos(cam_dir->z), ray_dir.z ); // Setup the voxel step based on what direction the ray is pointing int3 voxel_step = {1, 1, 1}; voxel_step *= (ray_dir > 0) - (ray_dir < 0); // Setup the voxel coords from the camera origin int3 voxel = convert_int3(*cam_pos); // Delta T is the units a ray must travel along an axis in order to // traverse an integer split float3 delta_t = fabs(1.0f / ray_dir); // Intersection T is the collection of the next intersection points // for all 3 axis XYZ. float3 intersection_t = delta_t; // Create a psuedo random number for view fog int2 randoms = { 3, 14 }; uint seed = randoms.x + id; uint t = seed ^ (seed << 11); uint result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8)); // Distance a ray can travel before it terminates int max_dist = 200 + result % 50; int dist = 0; // Bitmask to keep track of which axis was tripped int3 mask = { 0, 0, 0 }; // Andrew Woo's raycasting algo do { // Non-branching test of the lowest delta_t value mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy); // Based on the result increment the voxel and intersection intersection_t += delta_t * fabs(convert_float3(mask.xyz)); voxel.xyz += voxel_step.xyz * mask.xyz; // If the ray went out of bounds int3 overshoot = voxel <= *map_dim; int3 undershoot = voxel > 0; // "Sky" if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0){ write_imageui(image, pixel, (uint4)(135, 206, 235, 255)); return; } // "Water" if (undershoot.z == 0) { write_imageui(image, pixel, (uint4)(64, 164, 223, 255)); return; } // If we hit a voxel int index = voxel.x + map_dim->x * (voxel.y + map_dim->z * voxel.z); int voxel_data = map[index]; if (voxel_data != 0) { switch (voxel_data) { case 1: write_imageui(image, pixel, (uint4)(50, 0, 0, 255)); return; case 2: write_imageui(image, pixel, (uint4)(0, 50, 40, 255)); return; case 3: write_imageui(image, pixel, (uint4)(0, 0, 50, 255)); return; case 4: write_imageui(image, pixel, (uint4)(25, 0, 25, 255)); return; case 5: //write_imageui(image, pixel, (uint4)(200, 200, 200, 255)); write_imageui(image, pixel, white_light((uint4)(44, 176, 55, 100), (float3)(lights[7], lights[8], lights[9]), mask)); return; case 6: write_imageui(image, pixel, (uint4)(30, 80, 10, 255)); return; } } dist++; } while (dist < max_dist); write_imageui(image, pixel, (uint4)(135, 206, 235, 255)); return; }