#pragma once #include #include #include "Map.h" #include #include "util.hpp" Ray::Ray( Map *map, sf::Vector2 resolution, sf::Vector2 pixel, sf::Vector3 camera_position, sf::Vector3 ray_direction) { this->pixel = pixel; this->map = map; origin = camera_position; direction = ray_direction; dimensions = map->getDimensions(); } sf::Color Ray::Cast() { // Setup the voxel step based on what direction the ray is pointing sf::Vector3 voxel_step(1, 1, 1); voxel_step.x *= (direction.x > 0) - (direction.x < 0); voxel_step.y *= (direction.y > 0) - (direction.y < 0); voxel_step.z *= (direction.z > 0) - (direction.z < 0); // Setup the voxel coords from the camera origin voxel = sf::Vector3( floorf(origin.x), floorf(origin.y), floorf(origin.z) ); // Delta T is the units a ray must travel along an axis in order to // traverse an integer split delta_t = sf::Vector3( fabsf(1.0f / direction.x), fabsf(1.0f / direction.y), fabsf(1.0f / direction.z) ); // Intersection T is the collection of the next intersection points // for all 3 axis XYZ. intersection_t = sf::Vector3( delta_t.x, delta_t.y, delta_t.z ); int dist = 0; int face = -1; // X:0, Y:1, Z:2 // Andrew Woo's raycasting algo do { if ((intersection_t.x) < (intersection_t.y)) { if ((intersection_t.x) < (intersection_t.z)) { face = 0; voxel.x += voxel_step.x; intersection_t.x = intersection_t.x + delta_t.x; } else { face = 2; voxel.z += voxel_step.z; intersection_t.z = intersection_t.z + delta_t.z; } } else { if ((intersection_t.y) < (intersection_t.z)) { face = 1; voxel.y += voxel_step.y; intersection_t.y = intersection_t.y + delta_t.y; } else { face = 2; voxel.z += voxel_step.z; intersection_t.z = intersection_t.z + delta_t.z; } } // If the ray went out of bounds if (voxel.z >= dimensions.z) { return sf::Color(172, 245, 251, 200); } if (voxel.x >= dimensions.x) { return sf::Color(172, 245, 251, 200); } if (voxel.y >= dimensions.x) { return sf::Color(172, 245, 251, 200); } if (voxel.x < 0) { return sf::Color(172, 245, 251, 200); } if (voxel.y < 0) { return sf::Color(172, 245, 251, 200); } if (voxel.z < 0) { return sf::Color(172, 245, 251, 200); } // If we hit a voxel int index = voxel.x + dimensions.x * (voxel.y + dimensions.z * voxel.z); int voxel_data = map->list[index]; float alpha = 0; if (face == 0) { alpha = AngleBetweenVectors(sf::Vector3f(1, 0, 0), map->global_light); alpha = fmod(alpha, 0.785) * 2; } else if (face == 1) { alpha = AngleBetweenVectors(sf::Vector3f(0, 1, 0), map->global_light); alpha = fmod(alpha, 0.785) * 2; } else if (face == 2){ //alpha = 1.57 / 2; alpha = AngleBetweenVectors(sf::Vector3f(0, 0, 1), map->global_light); alpha = fmod(alpha, 0.785) * 2; } alpha *= 162; switch (voxel_data) { case 1: // AngleBew0 - 1.57 * 162 = 0 - 255 return sf::Color(255, 0, 0, alpha); case 2: return sf::Color(255, 10, 0, alpha); case 3: return sf::Color(255, 0, 255, alpha); case 4: return sf::Color(80, 0, 150, alpha); case 5: return sf::Color(255, 120, 255, alpha); case 6: return sf::Color(150, 80, 220, alpha); } dist++; } while (dist < 600); // Ray timeout color return sf::Color::Cyan; }