float4 white_light(float4 input, float3 light, int3 mask) { input.w = input.w + acos( dot( normalize(light), normalize(fabs(convert_float3(mask))) ) ) / 2; return input; } __kernel void min_kern( global char* map, global int3* map_dim, global int2* resolution, global float3* projection_matrix, global float2* cam_dir, global float3* cam_pos, global float* lights, global int* light_count, __write_only image2d_t image ){ size_t id = get_global_id(0); int2 pixel = {id % (*resolution).x, id / (*resolution).x}; float3 ray_dir = projection_matrix[pixel.x + (*resolution).x * pixel.y]; ray_dir = (float3)( ray_dir.z * sin((*cam_dir).x) + ray_dir.x * cos((*cam_dir).x), ray_dir.y, ray_dir.z * cos((*cam_dir).x) - ray_dir.x * sin((*cam_dir).x) ); ray_dir = (float3)( ray_dir.x * cos((*cam_dir).y) - ray_dir.y * sin((*cam_dir).y), ray_dir.x * sin((*cam_dir).y) + ray_dir.y * cos((*cam_dir).y), ray_dir.z ); // Setup the voxel step based on what direction the ray is pointing int3 voxel_step = {1, 1, 1}; voxel_step *= (ray_dir > 0) - (ray_dir < 0); // Setup the voxel coords from the camera origin int3 voxel = convert_int3(*cam_pos); // Delta T is the units a ray must travel along an axis in order to // traverse an integer split float3 delta_t = fabs(1.0f / ray_dir); // offset is how far we are into a voxel, enables sub voxel movement float3 offset = ((*cam_pos) - floor(*cam_pos)) * convert_float3(voxel_step); //offset.x += delta_t.x * convert_float((voxel_step.x < 0)); //offset -= delta_t * floor(offset / delta_t); // Intersection T is the collection of the next intersection points // for all 3 axis XYZ. float3 intersection_t = delta_t * offset; // for negative values, wrap around the delta_t, rather not do this // component wise, but it doesn't appear to want to work if (intersection_t.x < 0) { intersection_t.x += delta_t.x; } if (intersection_t.y < 0) { intersection_t.y += delta_t.y; } if (intersection_t.z < 0) { intersection_t.z += delta_t.z; } int2 randoms = { 3, 14 }; uint seed = randoms.x + id; uint t = seed ^ (seed << 11); uint result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8)); int max_dist = 500 + result % 50; int dist = 0; int3 mask = { 0, 0, 0 }; // Andrew Woo's raycasting algo do { mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy); intersection_t += delta_t * fabs(convert_float3(mask.xyz)); voxel.xyz += voxel_step.xyz * mask.xyz; // If the ray went out of bounds int3 overshoot = voxel <= *map_dim; int3 undershoot = voxel > 0; if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0){ write_imagef(image, pixel, (float4)(.73, .81, .89, 1.0)); return; } if (undershoot.z == 0) { write_imagef(image, pixel, (float4)(.14, .30, .50, 1.0)); return; } // If we hit a voxel int index = voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * voxel.z); int voxel_data = map[index]; if (voxel_data != 0) { switch (voxel_data) { case 1: write_imagef(image, pixel, (float4)(.50, .00, .00, 1)); return; case 2: write_imagef(image, pixel, (float4)(.00, .50, .40, 1.00)); return; case 3: write_imagef(image, pixel, (float4)(.00, .00, .50, 1.00)); return; case 4: write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00)); return; case 5: //write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00)); write_imagef(image, pixel, white_light((float4)(.25, .32, .14, 0.2), (float3)(lights[7], lights[8], lights[9]), mask)); return; case 6: write_imagef(image, pixel, (float4)(.30, .80, .10, 1.00)); return; } } dist++; } while (dist < max_dist); write_imagef(image, pixel, (float4)(.73, .81, .89, 1.0)); return; }