#include #include #include #include #include #ifdef linux #include #include #elif defined _WIN32 #include #include #include #include #include #include #elif defined TARGET_OS_MAC #include # include # include #include #include #endif #include "TestPlatform.cpp" #include "Map.h" #include "Curses.h" #include "util.hpp" #include "RayCaster.h" #include "CL_Wrapper.h" #include "Vector4.hpp" #include const int WINDOW_X = 1000; const int WINDOW_Y = 1000; const int WORK_SIZE = WINDOW_X * WINDOW_Y; const int MAP_X = 1024; const int MAP_Y = 1024; const int MAP_Z = 256; float elap_time(){ static std::chrono::time_point start; static bool started = false; if (!started){ start = std::chrono::system_clock::now(); started = true; } std::chrono::time_point now = std::chrono::system_clock::now(); std::chrono::duration elapsed_time = now - start; return elapsed_time.count(); } sf::Sprite window_sprite; sf::Texture window_texture; // Y: -1.57 is straight up // Y: 1.57 is straight down int main() { //Map m(sf::Vector3i (50, 50, 50)); //return 1; sf::RenderWindow window(sf::VideoMode(WINDOW_X, WINDOW_Y), "SFML"); // Setup CL, instantiate and pass in values to the kernel CL_Wrapper c; query_platform_devices(); c.acquire_platform_and_device(); c.create_shared_context(); c.create_command_queue(); if (c.compile_kernel("../kernels/ray_caster_kernel.cl", true, "min_kern") < 0) { std::cin.get(); return -1; } std::cout << "map..."; sf::Vector3i map_dim(MAP_X, MAP_Y, MAP_Z); Map* map = new Map(map_dim); c.create_buffer("map_buffer", sizeof(char) * map_dim.x * map_dim.y * map_dim.z, map->list); c.create_buffer("dim_buffer", sizeof(int) * 3, &map_dim); sf::Vector2i view_res(WINDOW_X, WINDOW_Y); c.create_buffer("res_buffer", sizeof(int) * 2, &view_res); double y_increment_radians = DegreesToRadians(50.0 / view_res.y); double x_increment_radians = DegreesToRadians(80.0 / view_res.x); std::cout << "view matrix..."; sf::Vector4f* view_matrix = new sf::Vector4f[WINDOW_X * WINDOW_Y * 4]; for (int y = -view_res.y / 2; y < view_res.y / 2; y++) { for (int x = -view_res.x / 2; x < view_res.x / 2; x++) { // The base ray direction to slew from sf::Vector3f ray(1, 0, 0); // Y axis, pitch ray = sf::Vector3f( ray.z * sin(y_increment_radians * y) + ray.x * cos(y_increment_radians * y), ray.y, ray.z * cos(y_increment_radians * y) - ray.x * sin(y_increment_radians * y) ); // Z axis, yaw ray = sf::Vector3f( ray.x * cos(x_increment_radians * x) - ray.y * sin(x_increment_radians * x), ray.x * sin(x_increment_radians * x) + ray.y * cos(x_increment_radians * x), ray.z ); int index = (x + view_res.x / 2) + view_res.x * (y + view_res.y / 2); ray = Normalize(ray); view_matrix[index] = sf::Vector4f( ray.x, ray.y, ray.z, 0 ); } } c.create_buffer("view_matrix_buffer", sizeof(float) * 4 * view_res.x * view_res.y, view_matrix); Camera camera( sf::Vector3f(55, 50, 50), sf::Vector2f(0.0f, 1.00f) ); c.create_buffer("cam_dir_buffer", sizeof(float) * 4, (void*)camera.get_direction_pointer(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR); c.create_buffer("cam_pos_buffer", sizeof(float) * 4, (void*)camera.get_position_pointer(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR); // {r, g, b, i, x, y, z, x', y', z'} float light[] = { 0.4, 0.8, 0.1, 1, 50, 50, 50, 1.1, 0.4, 0.7}; c.create_buffer("light_buffer", sizeof(float) * 10, light); int light_count = 1; c.create_buffer("light_count_buffer", sizeof(int), &light_count); // The drawing canvas unsigned char* pixel_array = new sf::Uint8[WINDOW_X * WINDOW_Y * 4]; for (int i = 0; i < WINDOW_X * WINDOW_Y * 4; i += 4) { pixel_array[i] = 255; // R? pixel_array[i + 1] = 255; // G? pixel_array[i + 2] = 255; // B? pixel_array[i + 3] = 100; // A? } sf::Texture t; t.create(WINDOW_X, WINDOW_Y); t.update(pixel_array); int error; cl_mem image_buff = clCreateFromGLTexture( c.getContext(), CL_MEM_WRITE_ONLY, GL_TEXTURE_2D, 0, t.getNativeHandle(), &error); if (c.assert(error, "clCreateFromGLTexture")) return -1; c.store_buffer(image_buff, "image_buffer"); c.set_kernel_arg("min_kern", 0, "map_buffer"); c.set_kernel_arg("min_kern", 1, "dim_buffer"); c.set_kernel_arg("min_kern", 2, "res_buffer"); c.set_kernel_arg("min_kern", 3, "view_matrix_buffer"); c.set_kernel_arg("min_kern", 4, "cam_dir_buffer"); c.set_kernel_arg("min_kern", 5, "cam_pos_buffer"); c.set_kernel_arg("min_kern", 6, "light_buffer"); c.set_kernel_arg("min_kern", 7, "light_count_buffer"); c.set_kernel_arg("min_kern", 8, "image_buffer"); sf::Sprite s; s.setTexture(t); s.setPosition(0, 0); // The step size in milliseconds between calls to Update() // Lets set it to 16.6 milliseonds (60FPS) float step_size = 0.0166f; // Timekeeping values for the loop double frame_time = 0.0, elapsed_time = 0.0, delta_time = 0.0, accumulator_time = 0.0, current_time = 0.0; fps_counter fps; // ============================= RAYCASTER SETUP ================================== // Setup the sprite and texture window_texture.create(WINDOW_X, WINDOW_Y); window_sprite.setPosition(0, 0); // State values sf::Vector3f cam_vec(0, 0, 0); RayCaster ray_caster(map, map_dim, view_res); sf::Vector2f *dp = camera.get_direction_pointer(); debug_text cam_text_x(1, 30, &dp->x, "X: "); debug_text cam_text_y(2, 30, &dp->y, "Y: "); sf::Vector3f *mp = camera.get_movement_pointer(); debug_text cam_text_mov_x(4, 30, &mp->x, "X: "); debug_text cam_text_mov_y(5, 30, &mp->y, "Y: "); debug_text cam_text_mov_z(6, 30, &mp->y, "Z: "); //debug_text cam_text_z(3, 30, &p->z); // =============================================================================== // Mouse capture sf::Vector2i deltas; sf::Vector2i fixed(window.getSize()); bool mouse_enabled = true; sf::Vector3f cam_mov_vec; while (window.isOpen()) { // Poll for events from the user sf::Event event; while (window.pollEvent(event)) { // If the user tries to exit the application via the GUI if (event.type == sf::Event::Closed) window.close(); if (event.type == sf::Event::KeyPressed) { if (event.key.code == sf::Keyboard::Space) { if (mouse_enabled) mouse_enabled = false; else mouse_enabled = true; } } } cam_vec.x = 0; cam_vec.y = 0; cam_vec.z = 0; if (sf::Keyboard::isKeyPressed(sf::Keyboard::Q)) { camera.add_relative_impulse(Camera::DIRECTION::DOWN); } if (sf::Keyboard::isKeyPressed(sf::Keyboard::E)) { camera.add_relative_impulse(Camera::DIRECTION::UP); } if (sf::Keyboard::isKeyPressed(sf::Keyboard::W)) { camera.add_relative_impulse(Camera::DIRECTION::FORWARD); } if (sf::Keyboard::isKeyPressed(sf::Keyboard::S)) { camera.add_relative_impulse(Camera::DIRECTION::REARWARD); } if (sf::Keyboard::isKeyPressed(sf::Keyboard::A)) { camera.add_relative_impulse(Camera::DIRECTION::LEFT); } if (sf::Keyboard::isKeyPressed(sf::Keyboard::D)) { camera.add_relative_impulse(Camera::DIRECTION::RIGHT); } if (sf::Keyboard::isKeyPressed(sf::Keyboard::T)) { camera.set_position(sf::Vector3f(50, 50, 50)); } camera.add_static_impulse(cam_vec); if (mouse_enabled) { deltas = fixed - sf::Mouse::getPosition(); if (deltas != sf::Vector2i(0, 0) && mouse_enabled == true) { // Mouse movement sf::Mouse::setPosition(fixed); camera.slew_camera(sf::Vector2f( deltas.y / 300.0f, deltas.x / 300.0f )); } } // Time keeping elapsed_time = elap_time(); delta_time = elapsed_time - current_time; current_time = elapsed_time; if (delta_time > 0.2f) delta_time = 0.2f; accumulator_time += delta_time; while ((accumulator_time - step_size) >= step_size) { accumulator_time -= step_size; // ==== DELTA TIME LOCKED ==== } // ==== FPS LOCKED ==== camera.update(delta_time); // Run the raycast c.run_kernel("min_kern", WORK_SIZE); // ==== RENDER ==== window.clear(sf::Color::Black); window.draw(s); // Give the frame counter the frame time and draw the average frame time fps.frame(delta_time); fps.draw(&window); cam_text_x.draw(&window); cam_text_y.draw(&window); cam_text_mov_x.draw(&window); cam_text_mov_y.draw(&window); cam_text_mov_z.draw(&window); window.display(); } return 0; }