#include "CLCaster.h" CLCaster::CLCaster() {} CLCaster::~CLCaster() {} bool CLCaster::init() { Logger::log("Initializing the Hardware Caster", Logger::LogLevel::INFO); if (!aquire_hardware()) { Logger::log("Failed to acquire OpenCL hardware", Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } if (!load_config()) { std::cout << "Select a device number which you wish to use" << std::endl; for (int i = 0; i < device_list.size(); i++) { std::cout << "\n-----------------------------------------------------------------" << std::endl; std::cout << "\tDevice Number : " << i << std::endl; std::cout << "-----------------------------------------------------------------" << std::endl; device_list.at(i).print(std::cout); } int selection = -1; while (selection < 0 && selection >= device_list.size()) { std::cout << "Device which you wish to use : "; std::cin >> selection; } device_id = device_list.at(selection).getDeviceId(); platform_id = device_list.at(selection).getPlatformId(); save_config(); } if (!create_shared_context()) { Logger::log("Failed to create shared CL GL context", Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } if (!create_command_queue()) { Logger::log("Failed to create a OpenCL command queue", Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } if (!compile_kernel("../kernels/ray_caster_kernel.cl", true, "raycaster")) { Logger::log("Failed to compile the kernel", Logger::LogLevel::ERROR, __LINE__, __FILE__); std::cin.get(); // hang the output window so we can read the error return false; } srand(time(nullptr)); int *seed_memory = new int[1920*1080]; if (!create_buffer("seed", sizeof(int) * 1920 * 1080, seed_memory)) return false; return true; } bool CLCaster::assign_map(std::shared_ptr map) { this->map = map; auto dimensions = map->array_map.getDimensions(); if (!create_buffer("map", sizeof(char) * dimensions.x * dimensions.y * dimensions.z, map->array_map.getDataPtr())) return false; if (!create_buffer("map_dimensions", sizeof(int) * 3, &dimensions)) return false; return true; } bool CLCaster::release_map() { this->map = nullptr; if (!release_buffer("map")) return false; if (!release_buffer("map_dimensions")) return false; return true; } bool CLCaster::assign_octree(std::shared_ptr map) { this->map = map; if (!create_buffer("octree_descriptor_buffer", map->octree.buffer_size * sizeof(uint64_t), map->octree.descriptor_buffer)) return false; if (!create_buffer("octree_attachment_lookup_buffer", map->octree.buffer_size * sizeof(uint32_t), map->octree.attachment_lookup)) return false; if (!create_buffer("octree_attachment_buffer", map->octree.buffer_size * sizeof(uint64_t), map->octree.attachment_buffer)) return false; if (!create_buffer("settings_buffer", sizeof(uint64_t), &map->octree.root_index)) return false; return true; } bool CLCaster::release_octree() { this->map = nullptr; if (!release_buffer("octree_descriptor_buffer")) return false; if (!release_buffer("octree_attachment_lookup_buffer")) return false; if (!release_buffer("octree_attachment_buffer")) return false; if (!release_buffer("settings_buffer")) return false; return true; } bool CLCaster::assign_camera(std::shared_ptr camera) { this->camera = camera; if (!create_buffer("camera_direction", sizeof(float) * 4, (void*)camera->get_direction_pointer(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR)) return false; if (!create_buffer("camera_position", sizeof(float) * 4, (void*)camera->get_position_pointer(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR)) return false; return true; } bool CLCaster::release_camera() { this->camera = nullptr; if (!release_buffer("camera_direction")) return false; if (!release_buffer("camera_position")) return false; return true; } bool CLCaster::validate() { Logger::log("Validating OpenCL kernel args", Logger::LogLevel::INFO); // Check to make sure everything has been entered if (!camera.get()) { Logger::log("Raycaster.validate() failed, camera not initialized", Logger::LogLevel::WARN); return false; } if (!map.get()) { Logger::log("Raycaster.validate() failed, map not initialized", Logger::LogLevel::WARN); return false; } if (!viewport_image) { Logger::log("Raycaster.validate() failed, viewport_image not initialized", Logger::LogLevel::WARN); return false; } if (!viewport_matrix) { Logger::log("Raycaster.validate() failed, viewport_matrix not initialized", Logger::LogLevel::WARN); return false; } // Set all the kernel args set_kernel_arg("raycaster", 0, "map"); set_kernel_arg("raycaster", 1, "map_dimensions"); set_kernel_arg("raycaster", 2, "viewport_resolution"); set_kernel_arg("raycaster", 3, "viewport_matrix"); set_kernel_arg("raycaster", 4, "camera_direction"); set_kernel_arg("raycaster", 5, "camera_position"); set_kernel_arg("raycaster", 6, "lights"); set_kernel_arg("raycaster", 7, "light_count"); set_kernel_arg("raycaster", 8, "image"); //set_kernel_arg("raycaster", 9, "seed"); set_kernel_arg("raycaster", 9, "texture_atlas"); set_kernel_arg("raycaster", 10, "atlas_dim"); set_kernel_arg("raycaster", 11, "tile_dim"); set_kernel_arg("raycaster", 12, "octree_descriptor_buffer"); set_kernel_arg("raycaster", 13, "octree_attachment_lookup_buffer"); set_kernel_arg("raycaster", 14, "octree_attachment_buffer"); set_kernel_arg("raycaster", 15, "settings_buffer"); return true; } bool CLCaster::create_texture_atlas(sf::Texture *t, sf::Vector2i tile_dim) { if (!create_image_buffer("texture_atlas", t->getSize().x * t->getSize().x * 4 * sizeof(float), t, CL_MEM_READ_ONLY)) return false; // create_buffer observes arg 3's sf::Vector2u v = t->getSize(); if (!create_buffer("atlas_dim", sizeof(sf::Vector2u) , &v)) return false; if (!create_buffer("tile_dim", sizeof(sf::Vector2i), &tile_dim)) return false; return true; } bool CLCaster::compute() { // correlating work size with texture size? good, bad? return run_kernel("raycaster", viewport_texture.getSize().x, viewport_texture.getSize().y); } // There is a possibility that I would want to move this over to be all inside it's own // container to make it so it can be changed via CL_MEM_USE_HOST_PTR. But I doubt it // would ever be called enough to warrant that // TODO : Move CL interaction into the CLCaster? bool CLCaster::create_viewport(int width, int height, float v_fov, float h_fov) { // CL needs the screen resolution sf::Vector2i view_res(width, height); if (!create_buffer("viewport_resolution", sizeof(int) * 2, &view_res)) return false; // And an array of vectors describing the way the "lens" of our // camera works // This could be modified to make some odd looking camera lenses double y_increment_radians = DegreesToRadians(v_fov / view_res.y); double x_increment_radians = DegreesToRadians(h_fov / view_res.x); viewport_matrix = new sf::Vector4f[width * height * 4]; for (int y = -view_res.y / 2; y < view_res.y / 2; y++) { for (int x = -view_res.x / 2; x < view_res.x / 2; x++) { // The base ray direction to slew from sf::Vector3f ray(1, 0, 0); // Y axis, pitch ray = sf::Vector3f( static_cast(ray.z * sin(y_increment_radians * y) + ray.x * cos(y_increment_radians * y)), static_cast(ray.y), static_cast(ray.z * cos(y_increment_radians * y) - ray.x * sin(y_increment_radians * y)) ); // Z axis, yaw ray = sf::Vector3f( static_cast(ray.x * cos(x_increment_radians * x) - ray.y * sin(x_increment_radians * x)), static_cast(ray.x * sin(x_increment_radians * x) + ray.y * cos(x_increment_radians * x)), static_cast(ray.z) ); // correct for the base ray pointing to (1, 0, 0) as (0, 0). Should equal (1.57, 0) ray = sf::Vector3f( static_cast(ray.z * sin(-1.57) + ray.x * cos(-1.57)), static_cast(ray.y), static_cast(ray.z * cos(-1.57) - ray.x * sin(-1.57)) ); int index = (x + view_res.x / 2) + view_res.x * (y + view_res.y / 2); ray = Normalize(ray); viewport_matrix[index] = sf::Vector4f( ray.x, ray.y, ray.z, 0 ); } } if (!create_buffer("viewport_matrix", sizeof(float) * 4 * view_res.x * view_res.y, viewport_matrix, CL_MEM_USE_HOST_PTR)) return false; // Create the image that opencl's rays write to viewport_image = new sf::Uint8[width * height * 4]; for (int i = 0; i < width * height * 4; i += 4) { viewport_image[i] = 255; // R viewport_image[i + 1] = 255; // G viewport_image[i + 2] = 255; // B viewport_image[i + 3] = 100; // A } // Interop lets us keep a reference to it as a texture viewport_texture.create(width, height); viewport_texture.update(viewport_image); viewport_sprite.setTexture(viewport_texture); // Pass the buffer to opencl if (!create_image_buffer("image", sizeof(sf::Uint8) * width * height * 4, &viewport_texture, CL_MEM_WRITE_ONLY)) return false; return true; } bool CLCaster::assign_lights(std::vector *data) { // Get a pointer to the packed light data this->lights = data; light_count = static_cast(lights->size()); cl_uint packed_size = sizeof(PackedData); if (!create_buffer("lights", packed_size * light_count, lights->data(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR)) return false; if (!create_buffer("light_count", 8, &light_count)) return false; return true; } void CLCaster::draw(sf::RenderWindow* window) { window->draw(viewport_sprite); } bool CLCaster::debug_quick_recompile() { if (!compile_kernel("../kernels/ray_caster_kernel.cl", true, "raycaster")) { Logger::log("Failed to recompile kernel", Logger::LogLevel::WARN, __LINE__, __FILE__); std::cin.get(); // hang the output window so we can read the error return false; } return validate(); } void CLCaster::render_gui() { ImGui::Begin("CLCaster"); if (ImGui::Button("Recompile Kernel")) { while (!debug_quick_recompile()) { std::cin.get(); }; } ImGui::End(); } void CLCaster::update_gui() { rendering = true; } void CLCaster::recieve_event(VrEventPublisher* publisher, std::unique_ptr event) { if (event->type == vr::Event::KeyPressed) { vr::KeyPressed *key_event = static_cast(event.get()); if (key_event->code == sf::Keyboard::T) { debug_quick_recompile(); } } } bool CLCaster::aquire_hardware() { Logger::log("Acquiring OpenCL Hardware", Logger::LogLevel::INFO); // Get the number of platforms cl_uint platform_count = 0; error = clGetPlatformIDs(0, nullptr, &platform_count); if (cl_assert(error)) { Logger::log("Failed at clGetPlatformIDs() :" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } if (platform_count == 0) { Logger::log("There appears to be no OpenCL platforms on this machine", Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } // Get the ID's for those platforms std::vector plt_buf(platform_count); error = clGetPlatformIDs(platform_count, plt_buf.data(), nullptr); if (cl_assert(error)) { Logger::log("Failed at clGetPlatformIDs() :" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } // Cycle through the platform ID's for (unsigned int i = 0; i < platform_count; i++) { // And get their device count cl_uint deviceIdCount = 0; error = clGetDeviceIDs(plt_buf[i], CL_DEVICE_TYPE_ALL, 0, nullptr, &deviceIdCount); if (cl_assert(error)) { Logger::log("Failed at clGetDeviceIDs() :" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } if (deviceIdCount == 0) { Logger::log("There appears to be no OpenCL platforms on this platform", Logger::LogLevel::INFO, __LINE__, __FILE__); } else { // Get the device ids and place them in the device list std::vector deviceIds(deviceIdCount); error = clGetDeviceIDs(plt_buf[i], CL_DEVICE_TYPE_ALL, deviceIdCount, deviceIds.data(), NULL); if (cl_assert(error)) { Logger::log("Failed at clGetDeviceIDs() :" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } for (int d = 0; d < deviceIds.size(); d++) { device_list.emplace_back(device(deviceIds[d], plt_buf.at(i))); } } } return true; } void CLCaster::save_config() { Logger::log("Saving OpenCL hardware config", Logger::LogLevel::INFO); std::ofstream output_file; output_file.open("device_config.bin", std::ofstream::binary | std::ofstream::out | std::ofstream::trunc); device d(device_id, platform_id); d.print_packed_data(output_file); output_file.close(); } bool CLCaster::load_config() { Logger::log("Loading hardware config", Logger::LogLevel::INFO); std::ifstream input_file("device_config.bin", std::ios::binary | std::ios::in); if (!input_file.is_open()) { Logger::log("No device_config.bin file found", Logger::LogLevel::WARN); return false; } device::packed_data data; input_file.read(reinterpret_cast(&data), sizeof(data)); input_file.close(); bool found = false; for (auto d : device_list) { if (memcmp(&d, &data, sizeof(device::packed_data)) == 0) { Logger::log("Found saved hardware config", Logger::LogLevel::INFO); found = true; device_id = d.getDeviceId(); platform_id = d.getPlatformId(); break; } } if (!found) { Logger::log("No hardware matching the saved device in device_config.bin found", Logger::LogLevel::WARN); return false; } return true; } bool CLCaster::query_hardware() { Logger::log("Querying OpenCL hardware", Logger::LogLevel::INFO); // Get the number of platforms cl_uint plt_cnt = 0; error = clGetPlatformIDs(0, nullptr, &plt_cnt); if (cl_assert(error)) { Logger::log("Failed at clGetPlatformIDs() :" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } // Fetch the platforms std::map> plt_ids; // buffer before map init std::vector plt_buf(plt_cnt); error = clGetPlatformIDs(plt_cnt, plt_buf.data(), nullptr); if (cl_assert(error)) { Logger::log("Failed at clGetPlatformIDs() :" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } // Map init for (auto id : plt_buf) { plt_ids.emplace(std::make_pair(id, std::vector())); } // For each platform, populate its devices for (unsigned int i = 0; i < plt_cnt; i++) { cl_uint deviceIdCount = 0; error = clGetDeviceIDs(plt_buf[i], CL_DEVICE_TYPE_ALL, 0, nullptr, &deviceIdCount); // Check to see if we even have OpenCL on this machine if (deviceIdCount == 0) { Logger::log("No devices supporting OpenCL found", Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } // Get the device ids std::vector deviceIds(deviceIdCount); error = clGetDeviceIDs(plt_buf[i], CL_DEVICE_TYPE_ALL, deviceIdCount, deviceIds.data(), NULL); if (cl_assert(error)) { Logger::log("Failed at clGetDeviceIDs() :" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } for (unsigned int q = 0; q < deviceIdCount; q++) { device_info d; cl_device_id id = deviceIds[q]; clGetDeviceInfo(id, CL_DEVICE_ADDRESS_BITS, sizeof(cl_uint), &d.cl_device_address_bits, NULL); clGetDeviceInfo(id, CL_DEVICE_AVAILABLE, sizeof(cl_bool), &d.cl_device_available, NULL); clGetDeviceInfo(id, CL_DEVICE_COMPILER_AVAILABLE, sizeof(cl_bool), &d.cl_device_compiler_available, NULL); clGetDeviceInfo(id, CL_DEVICE_ENDIAN_LITTLE, sizeof(cl_bool), &d.cl_device_endian_little, NULL); clGetDeviceInfo(id, CL_DEVICE_ERROR_CORRECTION_SUPPORT, sizeof(cl_bool), &d.cl_device_error_correction_support, NULL); clGetDeviceInfo(id, CL_DEVICE_EXTENSIONS, sizeof(char)*1024, &d.cl_device_extensions, NULL); clGetDeviceInfo(id, CL_DEVICE_GLOBAL_MEM_CACHE_SIZE, sizeof(cl_ulong), &d.cl_device_global_mem_cache_size, NULL); clGetDeviceInfo(id, CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE, sizeof(cl_uint), &d.cl_device_global_mem_cacheline_size, NULL); clGetDeviceInfo(id, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(cl_ulong), &d.cl_device_global_mem_size, NULL); clGetDeviceInfo(id, CL_DEVICE_IMAGE_SUPPORT, sizeof(cl_bool), &d.cl_device_image_support, NULL); clGetDeviceInfo(id, CL_DEVICE_IMAGE2D_MAX_HEIGHT, sizeof(size_t), &d.cl_device_image2d_max_height, NULL); clGetDeviceInfo(id, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof(size_t), &d.cl_device_image2d_max_width, NULL); clGetDeviceInfo(id, CL_DEVICE_IMAGE3D_MAX_DEPTH, sizeof(size_t), &d.cl_device_image3d_max_depth, NULL); clGetDeviceInfo(id, CL_DEVICE_IMAGE3D_MAX_HEIGHT, sizeof(size_t), &d.cl_device_image3d_max_height, NULL); clGetDeviceInfo(id, CL_DEVICE_IMAGE3D_MAX_WIDTH, sizeof(size_t), &d.cl_device_image3d_max_width, NULL); clGetDeviceInfo(id, CL_DEVICE_LOCAL_MEM_SIZE, sizeof(cl_ulong), &d.cl_device_local_mem_size, NULL); clGetDeviceInfo(id, CL_DEVICE_MAX_CLOCK_FREQUENCY, sizeof(size_t), &d.cl_device_max_clock_frequency, NULL); clGetDeviceInfo(id, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(size_t), &d.cl_device_max_compute_units, NULL); clGetDeviceInfo(id, CL_DEVICE_MAX_CONSTANT_ARGS, sizeof(size_t), &d.cl_device_max_constant_args, NULL); clGetDeviceInfo(id, CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE, sizeof(cl_ulong), &d.cl_device_max_constant_buffer_size, NULL); clGetDeviceInfo(id, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(cl_ulong), &d.cl_device_max_mem_alloc_size, NULL); clGetDeviceInfo(id, CL_DEVICE_MAX_PARAMETER_SIZE, sizeof(size_t), &d.cl_device_max_parameter_size, NULL); clGetDeviceInfo(id, CL_DEVICE_MAX_READ_IMAGE_ARGS, sizeof(cl_uint), &d.cl_device_max_read_image_args, NULL); clGetDeviceInfo(id, CL_DEVICE_MAX_SAMPLERS, sizeof(cl_uint), &d.cl_device_max_samplers, NULL); clGetDeviceInfo(id, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(cl_ulong), &d.cl_device_max_work_group_size, NULL); clGetDeviceInfo(id, CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, sizeof(cl_ulong), &d.cl_device_max_work_item_dimensions, NULL); clGetDeviceInfo(id, CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof(size_t)*3, &d.cl_device_max_work_item_sizes, NULL); clGetDeviceInfo(id, CL_DEVICE_MAX_WRITE_IMAGE_ARGS, sizeof(cl_uint), &d.cl_device_max_write_image_args, NULL); clGetDeviceInfo(id, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &d.cl_device_mem_base_addr_align, NULL); clGetDeviceInfo(id, CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE, sizeof(cl_uint), &d.cl_device_min_data_type_align_size, NULL); clGetDeviceInfo(id, CL_DEVICE_NAME, sizeof(char)*128, &d.cl_device_name, NULL); clGetDeviceInfo(id, CL_DEVICE_PLATFORM, sizeof(cl_platform_id), &d.cl_device_platform, NULL); clGetDeviceInfo(id, CL_DEVICE_PREFERRED_GLOBAL_ATOMIC_ALIGNMENT, sizeof(cl_uint), &d.cl_device_preferred_vector_width_char, NULL); clGetDeviceInfo(id, CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT, sizeof(cl_uint), &d.cl_device_preferred_vector_width_short, NULL); clGetDeviceInfo(id, CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT, sizeof(cl_uint), &d.cl_device_preferred_vector_width_int, NULL); clGetDeviceInfo(id, CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG, sizeof(cl_uint), &d.cl_device_preferred_vector_width_long, NULL); clGetDeviceInfo(id, CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT, sizeof(cl_uint), &d.cl_device_preferred_vector_width_float, NULL); clGetDeviceInfo(id, CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE, sizeof(cl_uint), &d.cl_device_preferred_vector_width_double, NULL); clGetDeviceInfo(id, CL_DEVICE_PROFILE, sizeof(char) * 256, &d.cl_device_profile, NULL); clGetDeviceInfo(id, CL_DEVICE_PROFILING_TIMER_RESOLUTION, sizeof(size_t), &d.cl_device_profiling_timer_resolution, NULL); clGetDeviceInfo(id, CL_DEVICE_TYPE, sizeof(cl_device_type), &d.device_type, NULL); clGetDeviceInfo(id, CL_DEVICE_VENDOR, sizeof(char)*128, &d.cl_device_vendor, NULL); clGetDeviceInfo(id, CL_DEVICE_VENDOR_ID, sizeof(cl_uint), &d.cl_device_vendor_id, NULL); clGetDeviceInfo(id, CL_DEVICE_VERSION, sizeof(char)*128, &d.cl_device_version, NULL); clGetDeviceInfo(id, CL_DRIVER_VERSION, sizeof(char)*128, &d.cl_driver_version, NULL); plt_ids.at(d.cl_device_platform).push_back(d); } } return true; } bool CLCaster::create_shared_context() { // Hurray for standards! // Setup the context properties to grab the current GL context #ifdef linux cl_context_properties context_properties[] = { CL_GL_CONTEXT_KHR, (cl_context_properties)glXGetCurrentContext(), CL_GLX_DISPLAY_KHR, (cl_context_properties)glXGetCurrentDisplay(), //CL_GL_CONTEXT_KHR, (cl_context_properties)eglGetCurrentContext(), //CL_EGL_DISPLAY_KHR, (cl_context_properties)eglGetCurrentDisplay(), CL_CONTEXT_PLATFORM, (cl_context_properties)platform_id, 0 }; #elif defined _WIN32 HDC hDC = wglGetCurrentDC(); HGLRC hGLRC = wglGetCurrentContext(); cl_context_properties context_properties[] = { CL_CONTEXT_PLATFORM, (cl_context_properties)platform_id, CL_GL_CONTEXT_KHR, (cl_context_properties)hGLRC, CL_WGL_HDC_KHR, (cl_context_properties)hDC, 0 }; #elif defined TARGET_OS_MAC CGLContextObj glContext = CGLGetCurrentContext(); CGLShareGroupObj shareGroup = CGLGetShareGroup(glContext); cl_context_properties context_properties[] = { CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE, (cl_context_properties)shareGroup, 0 }; #endif // Create our shared context context = clCreateContext( context_properties, 1, &device_id, nullptr, nullptr, &error ); if (cl_assert(error)) { Logger::log("Failed at clCreateContext() :" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } return true; } bool CLCaster::create_command_queue() { // If context and device_id have initialized if (context && device_id) { command_queue = clCreateCommandQueue(context, device_id, 0, &error); if (cl_assert(error)) { Logger::log("Failed at clCreateCommandQueue() :" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } } else { Logger::log("Failed creating the command queue. Context or device_id not initialized", Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } return true; } bool CLCaster::compile_kernel(std::string kernel_source, bool is_path, std::string kernel_name) { Logger::log("Compiling OpenCL Kernel", Logger::LogLevel::INFO); const char* source; std::string tmp; if (is_path) { //Load in the kernel, and c stringify it tmp = read_file(kernel_source); source = tmp.c_str(); } else { source = kernel_source.c_str(); } size_t kernel_source_size = strlen(source); // Load the source into CL's data structure cl_program program = clCreateProgramWithSource( context, 1, &source, &kernel_source_size, &error ); // This is not for compilation, it only loads the source if (cl_assert(error)) { Logger::log("Failed at clCreateProgramWithSource() :" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } // Try and build the program // "-cl-finite-math-only -cl-fast-relaxed-math -cl-unsafe-math-optimizations" // need a ref to the oct dimensions //std::string oct_dimensions = std::to_string(map->getDimensions().x); std::string build_string = "-DOCTDIM=" + std::to_string(Application::MAP_X) + " -cl-finite-math-only -cl-fast-relaxed-math -cl-unsafe-math-optimizations"; error = clBuildProgram(program, 1, &device_id, build_string.c_str(), NULL, NULL); // Check to see if it error'd out if (cl_assert(error)) { // Get the size of the queued log size_t log_size; clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size); char *log = new char[log_size]; // Grab the log clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, log_size, log, NULL); Logger::log("Failed at clBuildProgram() : " + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); Logger::log(log, Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } // Done initializing the kernel cl_kernel kernel = clCreateKernel(program, kernel_name.c_str(), &error); if (cl_assert(error)) { Logger::log("Failed at clCreateKernel() :" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } // Do I want these to overlap when repeated?? kernel_map[kernel_name] = kernel; //kernel_map.emplace(std::make_pair(kernel_name, kernel)); return true; } bool CLCaster::set_kernel_arg( std::string kernel_name, int index, std::string buffer_name) { error = clSetKernelArg( kernel_map.at(kernel_name), index, sizeof(cl_mem), (void *)&buffer_map.at(buffer_name)); if (cl_assert(error)) { Logger::log("Failed at clSetKernelArg() :" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); Logger::log("Buffer name : " + buffer_name, Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } return true; } bool CLCaster::create_image_buffer(std::string buffer_name, cl_uint size, sf::Texture* texture, cl_int access_type) { // I can imagine overwriting buffers will be common, so I think // this is safe to overwrite / release old buffers quietly if (buffer_map.count(buffer_name) > 0) { Logger::log("buffer_map already contains buffer of the same name, releasing conflicting buffer : " + buffer_name, Logger::LogLevel::INFO); if (!release_buffer(buffer_name)) return false; } cl_mem buff = clCreateFromGLTexture( getContext(), access_type, GL_TEXTURE_2D, 0, texture->getNativeHandle(), &error); if (cl_assert(error)) { Logger::log("Failed at clCreateFromGLTexture() :" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } if (!store_buffer(buff, buffer_name)) return false; return true; } bool CLCaster::create_buffer(std::string buffer_name, cl_uint size, void* data, cl_mem_flags flags) { // I can imagine overwriting buffers will be common, so I think // this is safe to overwrite / release old buffers quietly if (buffer_map.count(buffer_name) > 0) { Logger::log("buffer_map already contains buffer of the same name, releasing conflicting buffer : " + buffer_name, Logger::LogLevel::INFO); if (!release_buffer(buffer_name)) return false; } cl_mem buff = clCreateBuffer( getContext(), flags, size, data, &error ); if (cl_assert(error)) { Logger::log("Failed at clCreateBuffer() :" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); Logger::log("Buffer name : " + buffer_name, Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } if (!store_buffer(buff, buffer_name)) return false; return true; } bool CLCaster::create_buffer(std::string buffer_name, cl_uint size, void* data) { // I can imagine overwriting buffers will be common, so I think // this is safe to overwrite / release old buffers quietly if (buffer_map.count(buffer_name) > 0) { Logger::log("buffer_map already contains buffer of the same name, releasing conflicting buffer : " + buffer_name, Logger::LogLevel::INFO); if (!release_buffer(buffer_name)) return false; } cl_mem buff = clCreateBuffer( getContext(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, size, data, &error ); if (cl_assert(error)) { Logger::log("Failed at clCreateBuffer() :" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); Logger::log("Buffer name : " + buffer_name, Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } if (!store_buffer(buff, buffer_name)) return false; return true; } bool CLCaster::release_buffer(std::string buffer_name) { if (buffer_map.count(buffer_name) > 0) { int error = clReleaseMemObject(buffer_map.at(buffer_name)); if (cl_assert(error)) { Logger::log("Error releasing buffer at clReleaseMemObject()" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); Logger::log("buffer not removed : " + buffer_name, Logger::LogLevel::WARN, __LINE__, __FILE__); return false; } buffer_map.erase(buffer_name); } else { Logger::log("Error releasing buffer, buffer not found : " + buffer_name , Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } return true; } bool CLCaster::store_buffer(cl_mem buffer, std::string buffer_name) { if (buffer_map.count(buffer_name) == 0) { buffer_map.emplace(std::make_pair(buffer_name, buffer)); return true; } Logger::log("Failed to store buffer : " + buffer_name + " , name already taken", Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } bool CLCaster::run_kernel(std::string kernel_name, const int work_dim_x, const int work_dim_y) { size_t global_work_size[2] = { static_cast(work_dim_x), static_cast(work_dim_y)}; cl_kernel kernel = kernel_map.at(kernel_name); error = clEnqueueAcquireGLObjects(getCommandQueue(), 1, &buffer_map.at("image"), 0, 0, 0); if (cl_assert(error)) { Logger::log("Failed at clEnqueueAcquireGLObjects() :" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } //error = clEnqueueTask(command_queue, kernel, 0, NULL, NULL); error = clEnqueueNDRangeKernel( command_queue, kernel, 2, NULL, global_work_size, NULL, 0, NULL, NULL); if (cl_assert(error)) { Logger::log("Failed at clEnqueueNDRangeKernel() :" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } error = clFinish(getCommandQueue()); if (cl_assert(error)) { Logger::log("Failed at clFinish() :" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } // What if errors out and gl objects are never released? error = clEnqueueReleaseGLObjects(getCommandQueue(), 1, &buffer_map.at("image"), 0, NULL, NULL); if (cl_assert(error)) { Logger::log("Failed at clEnqueueReleaseGLObjects() :" + cl_err_lookup(error), Logger::LogLevel::ERROR, __LINE__, __FILE__); return false; } return true; } void CLCaster::print_kernel_arguments() { compile_kernel("../kernels/print_arguments.cl", true, "printer"); set_kernel_arg("printer", 0, "map"); set_kernel_arg("printer", 1, "map_dimensions"); set_kernel_arg("printer", 2, "viewport_resolution"); set_kernel_arg("printer", 3, "viewport_matrix"); set_kernel_arg("printer", 4, "camera_direction"); set_kernel_arg("printer", 5, "camera_position"); set_kernel_arg("printer", 6, "lights"); set_kernel_arg("printer", 7, "light_count"); set_kernel_arg("printer", 8, "image"); run_kernel("printer", 1, 1); } cl_device_id CLCaster::getDeviceID() { return device_id; }; cl_platform_id CLCaster::getPlatformID() { return platform_id; }; cl_context CLCaster::getContext() { return context; }; cl_kernel CLCaster::getKernel(std::string kernel_name) { return kernel_map.at(kernel_name); }; cl_command_queue CLCaster::getCommandQueue() { return command_queue; }; bool CLCaster::cl_assert(int error_code) { if (error_code == CL_SUCCESS || error_code == 1) return false; else return true; } std::string CLCaster::cl_err_lookup(int error_code) { std::string err_msg = ""; switch (error_code) { case CL_SUCCESS: err_msg += "CL_SUCCESS"; break; case 1: err_msg += "CL_SUCCESS"; break; case CL_DEVICE_NOT_FOUND: err_msg += "CL_DEVICE_NOT_FOUND"; break; case CL_DEVICE_NOT_AVAILABLE: err_msg = "CL_DEVICE_NOT_AVAILABLE"; break; case CL_COMPILER_NOT_AVAILABLE: err_msg = "CL_COMPILER_NOT_AVAILABLE"; break; case CL_MEM_OBJECT_ALLOCATION_FAILURE: err_msg = "CL_MEM_OBJECT_ALLOCATION_FAILURE"; break; case CL_OUT_OF_RESOURCES: err_msg = "CL_OUT_OF_RESOURCES"; break; case CL_OUT_OF_HOST_MEMORY: err_msg = "CL_OUT_OF_HOST_MEMORY"; break; case CL_PROFILING_INFO_NOT_AVAILABLE: err_msg = "CL_PROFILING_INFO_NOT_AVAILABLE"; break; case CL_MEM_COPY_OVERLAP: err_msg = "CL_MEM_COPY_OVERLAP"; break; case CL_IMAGE_FORMAT_MISMATCH: err_msg = "CL_IMAGE_FORMAT_MISMATCH"; break; case CL_IMAGE_FORMAT_NOT_SUPPORTED: err_msg = "CL_IMAGE_FORMAT_NOT_SUPPORTED"; break; case CL_BUILD_PROGRAM_FAILURE: err_msg = "CL_BUILD_PROGRAM_FAILURE"; break; case CL_MAP_FAILURE: err_msg = "CL_MAP_FAILURE"; break; case CL_MISALIGNED_SUB_BUFFER_OFFSET: err_msg = "CL_MISALIGNED_SUB_BUFFER_OFFSET"; break; case CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST: err_msg = "CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST"; break; case CL_COMPILE_PROGRAM_FAILURE: err_msg = "CL_COMPILE_PROGRAM_FAILURE"; break; case CL_LINKER_NOT_AVAILABLE: err_msg = "CL_LINKER_NOT_AVAILABLE"; break; case CL_LINK_PROGRAM_FAILURE: err_msg = "CL_LINK_PROGRAM_FAILURE"; break; case CL_DEVICE_PARTITION_FAILED: err_msg = "CL_DEVICE_PARTITION_FAILED"; break; case CL_KERNEL_ARG_INFO_NOT_AVAILABLE: err_msg = "CL_KERNEL_ARG_INFO_NOT_AVAILABLE"; break; case CL_INVALID_VALUE: err_msg = "CL_INVALID_VALUE"; break; case CL_INVALID_DEVICE_TYPE: err_msg = "CL_INVALID_DEVICE_TYPE"; break; case CL_INVALID_PLATFORM: err_msg = "CL_INVALID_PLATFORM"; break; case CL_INVALID_DEVICE: err_msg = "CL_INVALID_DEVICE"; break; case CL_INVALID_CONTEXT: err_msg = "CL_INVALID_CONTEXT"; break; case CL_INVALID_QUEUE_PROPERTIES: err_msg = "CL_INVALID_QUEUE_PROPERTIES"; break; case CL_INVALID_COMMAND_QUEUE: err_msg = "CL_INVALID_COMMAND_QUEUE"; break; case CL_INVALID_HOST_PTR: err_msg = "CL_INVALID_HOST_PTR"; break; case CL_INVALID_MEM_OBJECT: err_msg = "CL_INVALID_MEM_OBJECT"; break; case CL_INVALID_IMAGE_FORMAT_DESCRIPTOR: err_msg = "CL_INVALID_IMAGE_FORMAT_DESCRIPTOR"; break; case CL_INVALID_IMAGE_SIZE: err_msg = "CL_INVALID_IMAGE_SIZE"; break; case CL_INVALID_SAMPLER: err_msg = "CL_INVALID_SAMPLER"; break; case CL_INVALID_BINARY: err_msg = "CL_INVALID_BINARY"; break; case CL_INVALID_BUILD_OPTIONS: err_msg = "CL_INVALID_BUILD_OPTIONS"; break; case CL_INVALID_PROGRAM: err_msg = "CL_INVALID_PROGRAM"; break; case CL_INVALID_PROGRAM_EXECUTABLE: err_msg = "CL_INVALID_PROGRAM_EXECUTABLE"; break; case CL_INVALID_KERNEL_NAME: err_msg = "CL_INVALID_KERNEL_NAME"; break; case CL_INVALID_KERNEL_DEFINITION: err_msg = "CL_INVALID_KERNEL_DEFINITION"; break; case CL_INVALID_KERNEL: err_msg = "CL_INVALID_KERNEL"; break; case CL_INVALID_ARG_INDEX: err_msg = "CL_INVALID_ARG_INDEX"; break; case CL_INVALID_ARG_VALUE: err_msg = "CL_INVALID_ARG_VALUE"; break; case CL_INVALID_ARG_SIZE: err_msg = "CL_INVALID_ARG_SIZE"; break; case CL_INVALID_KERNEL_ARGS: err_msg = "CL_INVALID_KERNEL_ARGS"; break; case CL_INVALID_WORK_DIMENSION: err_msg = "CL_INVALID_WORK_DIMENSION"; break; case CL_INVALID_WORK_GROUP_SIZE: err_msg = "CL_INVALID_WORK_GROUP_SIZE"; break; case CL_INVALID_WORK_ITEM_SIZE: err_msg = "CL_INVALID_WORK_ITEM_SIZE"; break; case CL_INVALID_GLOBAL_OFFSET: err_msg = "CL_INVALID_GLOBAL_OFFSET"; break; case CL_INVALID_EVENT_WAIT_LIST: err_msg = "CL_INVALID_EVENT_WAIT_LIST"; break; case CL_INVALID_EVENT: err_msg = "CL_INVALID_EVENT"; break; case CL_INVALID_OPERATION: err_msg = "CL_INVALID_OPERATION"; break; case CL_INVALID_GL_OBJECT: err_msg = "CL_INVALID_GL_OBJECT"; break; case CL_INVALID_BUFFER_SIZE: err_msg = "CL_INVALID_BUFFER_SIZE"; break; case CL_INVALID_MIP_LEVEL: err_msg = "CL_INVALID_MIP_LEVEL"; break; case CL_INVALID_GLOBAL_WORK_SIZE: err_msg = "CL_INVALID_GLOBAL_WORK_SIZE"; break; case CL_INVALID_PROPERTY: err_msg = "CL_INVALID_PROPERTY"; break; case CL_INVALID_IMAGE_DESCRIPTOR: err_msg = "CL_INVALID_IMAGE_DESCRIPTOR"; break; case CL_INVALID_COMPILER_OPTIONS: err_msg = "CL_INVALID_COMPILER_OPTIONS"; break; case CL_INVALID_LINKER_OPTIONS: err_msg = "CL_INVALID_LINKER_OPTIONS"; break; case CL_INVALID_DEVICE_PARTITION_COUNT: err_msg = "CL_INVALID_DEVICE_PARTITION_COUNT"; break; case CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR: err_msg = "CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR"; break; case CL_PLATFORM_NOT_FOUND_KHR: err_msg = "CL_PLATFORM_NOT_FOUND_KHR"; break; default: err_msg = "UNKNOWN_ERROR"; } return err_msg; } CLCaster::device::device(cl_device_id device_id, cl_platform_id platform_id) { this->device_id = device_id; this->platform_id = platform_id; int error = 0; error = clGetPlatformInfo(platform_id, CL_PLATFORM_NAME, 128, (void*)&data.platform_name, nullptr); if (cl_assert(error)) { Logger::log("Failed at function clGetPlatformInfo", Logger::LogLevel::ERROR, __LINE__, __FILE__); return; } error = clGetDeviceInfo(device_id, CL_DEVICE_VERSION, sizeof(char) * 128, &data.opencl_version, NULL); // Just check for error on the first call if (cl_assert(error)) { Logger::log("Failed at function clGetDeviceInfo", Logger::LogLevel::ERROR, __LINE__, __FILE__); return; } error = clGetDeviceInfo(device_id, CL_DEVICE_TYPE, sizeof(cl_device_type), &data.device_type, NULL); error = clGetDeviceInfo(device_id, CL_DEVICE_MAX_CLOCK_FREQUENCY, sizeof(cl_uint), &data.clock_frequency, NULL); error = clGetDeviceInfo(device_id, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(cl_uint), &data.compute_units, NULL); error = clGetDeviceInfo(device_id, CL_DEVICE_EXTENSIONS, 1024, &data.device_extensions, NULL); error = clGetDeviceInfo(device_id, CL_DEVICE_NAME, 256, &data.device_name, NULL); error = clGetDeviceInfo(device_id, CL_DEVICE_ENDIAN_LITTLE, sizeof(cl_bool), &is_little_endian, NULL); // Check for the sharing extension if (std::string(data.device_extensions).find("cl_khr_gl_sharing") != std::string::npos || std::string(data.device_extensions).find("cl_APPLE_gl_sharing") != std::string::npos) { cl_gl_sharing = true; } } CLCaster::device::device(const device& d) { // member values, copy individually device_id = d.device_id; platform_id = d.platform_id; is_little_endian = d.is_little_endian; cl_gl_sharing = d.cl_gl_sharing; // struct so it copies by value data = d.data; } void CLCaster::device::print(std::ostream& stream) const { stream << "\n\tDevice ID : " << device_id << std::endl; stream << "\tDevice Name : " << data.device_name << std::endl; stream << "\tPlatform ID : " << platform_id << std::endl; stream << "\tPlatform Name : " << data.platform_name << std::endl; stream << "\tOpenCL Version : " << data.opencl_version << std::endl; stream << "\tSupports sharing : " << std::boolalpha << cl_gl_sharing << std::endl; stream << "\tDevice Type : "; if (data.device_type == CL_DEVICE_TYPE_CPU) stream << "CPU" << std::endl; else if (data.device_type == CL_DEVICE_TYPE_GPU) stream << "GPU" << std::endl; else if (data.device_type == CL_DEVICE_TYPE_ACCELERATOR) stream << "Accelerator" << std::endl; stream << "\tIs Little Endian : " << std::boolalpha << is_little_endian << std::endl; stream << "\tClock Frequency : " << data.clock_frequency << std::endl; stream << "\tCompute Units : " << data.compute_units << std::endl; stream << "\n*Extensions*" << std::endl; stream << data.device_extensions << std::endl; stream << "\n"; } void CLCaster::device::print_packed_data(std::ostream& stream) { stream.write(reinterpret_cast(&data), sizeof(data)); }