#pragma once #include #include #include #include #include #include "LightController.h" #include "map/Old_Map.h" #include "Camera.h" #include #include #include "Logger.h" #ifdef linux #include #include #include #elif defined _WIN32 #include #include #include // Note: windows.h must be included before Gl/GL.h #include #include #elif defined TARGET_OS_MAC #include #include #include #endif #undef ERROR struct device_info { cl_uint cl_device_address_bits; cl_bool cl_device_available; cl_bool cl_device_compiler_available; cl_bool cl_device_endian_little; cl_bool cl_device_error_correction_support; char cl_device_extensions[1024]; cl_ulong cl_device_global_mem_cache_size; cl_uint cl_device_global_mem_cacheline_size; cl_ulong cl_device_global_mem_size; cl_bool cl_device_image_support; size_t cl_device_image2d_max_height; size_t cl_device_image2d_max_width; size_t cl_device_image3d_max_depth; size_t cl_device_image3d_max_height; size_t cl_device_image3d_max_width; cl_ulong cl_device_local_mem_size; cl_uint cl_device_max_clock_frequency; cl_uint cl_device_max_compute_units; cl_uint cl_device_max_constant_args; cl_ulong cl_device_max_constant_buffer_size; cl_ulong cl_device_max_mem_alloc_size; size_t cl_device_max_parameter_size; cl_uint cl_device_max_read_image_args; cl_uint cl_device_max_samplers; size_t cl_device_max_work_group_size; cl_uint cl_device_max_work_item_dimensions; size_t cl_device_max_work_item_sizes[3]; cl_uint cl_device_max_write_image_args; cl_uint cl_device_mem_base_addr_align; cl_uint cl_device_min_data_type_align_size; char cl_device_name[128]; cl_platform_id cl_device_platform; cl_uint cl_device_preferred_vector_width_char; cl_uint cl_device_preferred_vector_width_short; cl_uint cl_device_preferred_vector_width_int; cl_uint cl_device_preferred_vector_width_long; cl_uint cl_device_preferred_vector_width_float; cl_uint cl_device_preferred_vector_width_double; char cl_device_profile[256]; size_t cl_device_profiling_timer_resolution; cl_device_type device_type; char cl_device_vendor[128]; cl_uint cl_device_vendor_id; char cl_device_version[128]; char cl_driver_version[128]; }; struct PackedData; class Hardware_Caster { public: enum ERROR_CODES { SHARING_NOT_SUPPORTED = 800, OPENCL_NOT_SUPPORTED = 801, OPENCL_ERROR = 802, ERR = 803 }; /** * Device is a storage container for device data we retrieve from OpenCL * * The data is mainly queries as strings or integer types and stored into * respective containers. We store this data into a file and retrieve it later * to let users select a preferred compute device and keep track of their choice */ class device { public: #pragma pack(push, 1) struct packed_data { cl_device_type device_type; cl_uint clock_frequency; char opencl_version[64]; cl_uint compute_units; char device_extensions[1024]; char device_name[256]; char platform_name[128]; }; #pragma pack(pop) device(cl_device_id device_id, cl_platform_id platform_id); device(const device& d); void print(std::ostream& stream) const; void print_packed_data(std::ostream& stream); cl_device_id getDeviceId() const { return device_id; }; cl_platform_id getPlatformId() const { return platform_id; }; private: packed_data data; cl_device_id device_id; cl_platform_id platform_id; cl_bool is_little_endian = false; bool cl_gl_sharing = false; }; /** * Hardware caster is the beginning and end to all interaction with the GPU. * * It queries devices, manages the creation of various data structures as well * as they syncing between the GPU. It Handles computing of the cast as well * as rendering of the computed cast. * */ Hardware_Caster(); virtual ~Hardware_Caster(); // Queries hardware, creates the command queue and context, and compiles kernel int init(); // Creates a texture to send to the GPU via height and width // Creates a viewport vector array via vertical and horizontal fov bool create_viewport(int width, int height, float v_fov, float h_fov) ; // Light controllers own the copy of the PackedData array. // We receive a pointer to the array and USE_HOST_POINTER to map the memory to the GPU bool assign_lights(std::vector *data) ; // We take a ptr to the map and create the map, and map_dimensions buffer for the GPU void assign_map(Old_Map *map) ; // We take a ptr to the camera and create a camera direction and position buffer void assign_camera(Camera *camera) ; // TODO: Hoist this to the base class // Creates 3 buffers relating to the texture atlas: texture_atlas, atlas_dim, and tile_dim // With these on the GPU we can texture any quad with an atlas tile void create_texture_atlas(sf::Texture *t, sf::Vector2i tile_dim); // Check to make sure that the buffers have been initiated and set them as kernel args void validate() ; // Aquires the GL objects, runs the kernel, releases back the GL objects void compute() ; // Take the viewport sprite and draw it to the screen void draw(sf::RenderWindow* window) ; bool load_config(); void save_config(); // ================================== DEBUG ======================================= // Re compile the kernel and revalidate the args bool debug_quick_recompile(); // Modify the viewport matrix void test_edit_viewport(int width, int height, float v_fov, float h_fov); private: // Iterate the devices available and choose the best one // Also checks for the sharing extension int acquire_platform_and_device(); bool aquire_hardware(); int query_hardware(); // With respect to the individual platforms implementation of sharing // create a shared cl_gl context int create_shared_context(); // Using the context and the device create a command queue for them int create_command_queue(); // Buffer operations // All of these functions create and store a buffer in a map with the key representing their name // Create an image buffer from an SF texture. Access Type is the read/write specifier required by OpenCL bool create_image_buffer(std::string buffer_name, cl_uint size, sf::Texture* texture, cl_int access_type); // Create a buffer with CL_MEM_READ_ONLY and CL_MEM_COPY_HOST_PTR bool create_buffer(std::string buffer_name, cl_uint size, void* data); // Create a buffer with user defined data flags bool create_buffer(std::string buffer_name, cl_uint size, void* data, cl_mem_flags flags); // Store a cl_mem object in the buffer map bool store_buffer(cl_mem buffer, std::string buffer_name); // Using CL release the memory object and remove the KVP associated with the buffer name bool release_buffer(std::string buffer_name); // Compile the kernel with either a full src string or by is_path=true and kernel_source = a valid path bool compile_kernel(std::string kernel_source, bool is_path, std::string kernel_name); // Set the arg index for the specified kernel and buffer bool set_kernel_arg(std::string kernel_name, int index, std::string buffer_name); // Run the kernel using a 1d work size bool run_kernel(std::string kernel_name, const int work_dim_x, const int work_dim_y); // Run a test kernel that prints out the kernel args void print_kernel_arguments(); // CL error code handler. ImGui overlaps the assert() function annoyingly so I had to rename it static bool cl_assert(int error_code); static std::string cl_err_lookup(int error_code); //static bool vr_assert(int error_code) cl_device_id getDeviceID(); cl_platform_id getPlatformID(); cl_context getContext(); cl_kernel getKernel(std::string kernel_name); cl_command_queue getCommandQueue(); // Our device data cl_platform_id platform_id; cl_device_id device_id; // And state cl_context context; cl_command_queue command_queue; // Containers holding the kernels and buffers std::map kernel_map; std::map buffer_map; std::unordered_map>> image_map; sf::Sprite viewport_sprite; sf::Texture viewport_texture; Old_Map * map = nullptr; Camera *camera = nullptr; // std::vector *lights; std::vector *lights; int light_count = 0; sf::Uint8 *viewport_image = nullptr; sf::Vector4f *viewport_matrix = nullptr; sf::Vector2i viewport_resolution; int error = 0; std::vector device_list; };