#include "map/Octree.h" Octree::Octree() { // initialize the the buffers to 0's descriptor_buffer = new uint64_t[buffer_size](); attachment_lookup = new uint32_t[buffer_size](); attachment_buffer = new uint64_t[buffer_size](); } void Octree::Generate(char* data, sf::Vector3i dimensions) { // Launch the recursive generator at (0,0,0) as the first point // and the octree dimension as the initial block size std::tuple root_node = GenerationRecursion(data, dimensions, sf::Vector3i(0, 0, 0), OCT_DIM/2); // ========= DEBUG ============== PrettyPrintUINT64(std::get<0>(root_node), &output_stream); output_stream << " " << OCT_DIM << " " << counter++ << std::endl; // ============================== // set the root nodes relative pointer to 1 because the next element will be the top of the tree, and push to the stack std::get<0>(root_node) |= 1; memcpy(&descriptor_buffer[descriptor_buffer_position], &std::get<0>(root_node), sizeof(uint64_t)); root_index = descriptor_buffer_position; descriptor_buffer_position--; DumpLog(&output_stream, "raw_output.txt"); output_stream.str(""); for (int i = 0; i < buffer_size; i++) { PrettyPrintUINT64(descriptor_buffer[i], &output_stream); } DumpLog(&output_stream, "raw_data.txt"); } OctState Octree::GetVoxel(sf::Vector3i position) { // Struct that holds the state necessary to continue the traversal from the found voxel OctState state; // push the root node to the parent stack uint64_t current_index = root_index; uint64_t head = descriptor_buffer[current_index]; //PrettyPrintUINT64(head); state.parent_stack[state.parent_stack_position] = head; // Set our initial dimension and the position at the corner of the oct to keep track of our position int dimension = OCT_DIM; sf::Vector3i quad_position(0, 0, 0); // While we are not at the required resolution // Traverse down by setting the valid/leaf mask to the subvoxel // Check to see if it is valid // Yes? // Check to see if it is a leaf // No? Break // Yes? Scale down to the next hierarchy, push the parent to the stack // // No? // Break while (dimension > 1) { // So we can be a little bit tricky here and increment our // array index that holds our masks as we build the idx. // Adding 1 for X, 2 for Y, and 4 for Z int mask_index = 0; // Do the logic steps to find which sub oct we step down into if (position.x >= (dimension / 2) + quad_position.x) { // Set our voxel position to the (0,0) of the correct oct quad_position.x += (dimension / 2); // increment the mask index and mentioned above mask_index += 1; // Set the idx to represent the move state.idx_stack[state.scale] |= idx_set_x_mask; } if (position.y >= (dimension / 2) + quad_position.y) { quad_position.y |= (dimension / 2); mask_index += 2; // TODO What is up with the binary operator on this one? state.idx_stack[state.scale] ^= idx_set_y_mask; } if (position.z >= (dimension / 2) + quad_position.z) { quad_position.z += (dimension / 2); mask_index += 4; state.idx_stack[state.scale] |= idx_set_z_mask; } // Check to see if we are on a valid oct if ((head >> 16) & mask_8[mask_index]) { // Check to see if it is a leaf if ((head >> 24) & mask_8[mask_index]) { // If it is, then we cannot traverse further as CP's won't have been generated state.found = 1; return state; } // If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy state.scale++; dimension /= 2; // Count the number of valid octs that come before and add it to the index to get the position // Negate it by one as it counts itself int count = count_bits((uint8_t)(head >> 16) & count_mask_8[mask_index]) - 1; // access the element at which head points to and then add the specified number of indices // to get to the correct child descriptor current_index = current_index + (head & child_pointer_mask) + count; head = descriptor_buffer[current_index]; // Increment the parent stack position and put the new oct node as the parent state.parent_stack_position++; state.parent_stack[state.parent_stack_position] = head; } else { // If the oct was not valid, then no CP's exists any further // This implicitly says that if it's non-valid then it must be a leaf!! // It appears that the traversal is now working but I need // to focus on how to now take care of the end condition. // Currently it adds the last parent on the second to lowest // oct CP. Not sure if thats correct state.found = 0; return state; } } state.found = 1; return state; } void Octree::print_block(int block_pos) { std::stringstream sss; for (int i = block_pos; i < (int)pow(2, 15); i++) { PrettyPrintUINT64(descriptor_buffer[i], &sss); sss << "\n"; } DumpLog(&sss, "raw_data.txt"); } std::tuple Octree::GenerationRecursion(char* data, sf::Vector3i dimensions, sf::Vector3i pos, unsigned int voxel_scale) { // The 8 subvoxel coords starting from the 1th direction, the direction of the origin of the 3d grid // XY, Z++, XY std::vector v = { sf::Vector3i(pos.x , pos.y , pos.z), sf::Vector3i(pos.x + voxel_scale, pos.y , pos.z), sf::Vector3i(pos.x , pos.y + voxel_scale, pos.z), sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z), sf::Vector3i(pos.x , pos.y , pos.z + voxel_scale), sf::Vector3i(pos.x + voxel_scale, pos.y , pos.z + voxel_scale), sf::Vector3i(pos.x , pos.y + voxel_scale, pos.z + voxel_scale), sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z + voxel_scale) }; // A tuple holding the child descriptor that we're going to fill out and the // absolute position of it within the descriptor buffer std::tuple descriptor_and_position(0, 0); // If we hit the 1th voxel scale then we need to query the 3D grid // and get the voxel at that position. I assume in the future when I // want to do chunking / loading of raw data I can edit the voxel access if (voxel_scale == 1) { // Setting the individual valid mask bits // These don't bound check, should they? for (int i = 0; i < v.size(); i++) { if (get1DIndexedVoxel(data, dimensions, v.at(i))) SetBit(i + 16, &std::get<0>(descriptor_and_position)); } // We are querying leafs, so we need to fill the leaf mask std::get<0>(descriptor_and_position) |= 0xFF000000; // The CP will be left blank, contour mask and ptr will need to // be added here later return descriptor_and_position; } std::vector> descriptor_position_array; // Generate down the recursion, returning the descriptor of the current node for (int i = 0; i < v.size(); i++) { std::tuple child(0, 0); // Get the child descriptor from the i'th to 8th subvoxel child = GenerationRecursion(data, dimensions, v.at(i), voxel_scale / 2); // =========== Debug =========== PrettyPrintUINT64(std::get<0>(child), &output_stream); output_stream << " " << voxel_scale << " " << counter++ << std::endl; // ============================= // If the child is a leaf (contiguous) of non-valid values if (IsLeaf(std::get<0>(child)) && !CheckLeafSign(std::get<0>(child))) { // Leave the valid mask 0, set leaf mask to 1 SetBit(i + 16 + 8, &std::get<0>(descriptor_and_position)); } // If the child is valid and not a leaf else { // Set the valid mask, and add it to the descriptor array SetBit(i + 16, &std::get<0>(descriptor_and_position)); descriptor_position_array.push_back(child); } } // We are working bottom up so we need to subtract from the stack position // the amount of elements we want to use. In the worst case this will be // a far pointer for ever descriptor (size * 2) int worst_case_insertion_size = descriptor_position_array.size() * 2; // check to see if we exceeded this page header, if so set the header and move the global position if (page_header_counter - worst_case_insertion_size <= 0) { // Jump to the page headers position and reset the counter descriptor_buffer_position -= 0x8000 - page_header_counter; page_header_counter = 0x8000; // Fill the space with blank memcpy(&descriptor_buffer[descriptor_buffer_position], ¤t_info_section_position, sizeof(uint64_t)); descriptor_buffer_position--; } unsigned int far_pointer_count = 0; uint64_t far_pointer_block_position = descriptor_buffer_position; // Count the far pointers we need to allocate for (int i = descriptor_position_array.size() - 1; i >= 0; i--) { // this is not the actual relative distance write, so we pessimistically guess that we will have // the worst relative distance via the insertion size int relative_distance = std::get<1>(descriptor_position_array.at(i)) - (descriptor_buffer_position - worst_case_insertion_size); // check to see if we tripped the far pointer if (relative_distance > 0x8000) { // This is writing the ABSOLUTE POSITION for far pointers, is this what I want? memcpy(&descriptor_buffer[descriptor_buffer_position], &std::get<1>(descriptor_position_array.at(i)), sizeof(uint64_t)); descriptor_buffer_position--; page_header_counter--; far_pointer_count++; } } // We gotta go backwards as memcpy of a vector can be emulated by starting from the rear for (int i = descriptor_position_array.size() - 1; i >= 0; i--) { // just gonna redo the far pointer check loosing a couple of cycles but oh well int relative_distance = std::get<1>(descriptor_position_array.at(i)) - descriptor_buffer_position; uint64_t descriptor = std::get<0>(descriptor_position_array.at(i)); // check to see if the if (relative_distance > 0x8000) { descriptor |= far_bit_mask; descriptor |= far_pointer_block_position; far_pointer_block_position--; } else if (relative_distance > 0) { descriptor |= (uint64_t)relative_distance; } // We have finished building the CD so we push it onto the buffer memcpy(&descriptor_buffer[descriptor_buffer_position], &descriptor, sizeof(uint64_t)); descriptor_buffer_position--; page_header_counter--; } // The position this descriptor points to is the last one written to the stack. AKA // the current stack position (empty slot) plus one std::get<1>(descriptor_and_position) = descriptor_buffer_position + 1; // Return the node up the stack return descriptor_and_position; } char Octree::get1DIndexedVoxel(char* data, sf::Vector3i dimensions, sf::Vector3i position) { return data[position.x + OCT_DIM * (position.y + OCT_DIM * position.z)]; } bool Octree::Validate(char* data, sf::Vector3i dimensions){ // std::cout << (int)get1DIndexedVoxel(data, dimensions, sf::Vector3i(16, 16, 16)) << std::endl; // std::cout << (int)GetVoxel(sf::Vector3i(16, 16, 16)) << std::endl; for (int x = 0; x < OCT_DIM; x++) { for (int y = 0; y < OCT_DIM; y++) { for (int z = 0; z < OCT_DIM; z++) { sf::Vector3i pos(x, y, z); char arr_val = get1DIndexedVoxel(data, dimensions, pos); char oct_val = GetVoxel(pos).found; if (arr_val != oct_val) { std::cout << "X: " << pos.x << " Y: " << pos.y << " Z: " << pos.z << " "; std::cout << (int)arr_val << " : " << (int)oct_val << std::endl; } } } } return true; }