#include #include #include #include #include "util.hpp" #include "RayCaster.h" #include const int WINDOW_X = 200; const int WINDOW_Y = 200; float elap_time(){ static std::chrono::time_point start; static bool started = false; if (!started){ start = std::chrono::system_clock::now(); started = true; } std::chrono::time_point now = std::chrono::system_clock::now(); std::chrono::duration elapsed_time = now - start; return elapsed_time.count(); } sf::Sprite window_sprite; sf::Texture window_texture; // Y: -1.57 is straight up // Y: 1.57 is straight down void test_ray_reflection(){ sf::Vector3f r(0.588, -0.78, -0.196); sf::Vector3f i(0, 0.928, 0.37); // is this needed? free spin but bounded 0 < z < pi if (i.z > PI) i.z -= PI; else if (i.z < 0) i.z += PI; std::cout << AngleBetweenVectors(r, i); return; } int main() { // Initialize the render window sf::RenderWindow window(sf::VideoMode(WINDOW_X, WINDOW_Y), "SFML"); // The step size in milliseconds between calls to Update() // Lets set it to 16.6 milliseonds (60FPS) float step_size = 0.0166f; // Timekeeping values for the loop double frame_time = 0.0, elapsed_time = 0.0, delta_time = 0.0, accumulator_time = 0.0, current_time = 0.0; fps_counter fps; // ============================= RAYCASTER SETUP ================================== // Setup the sprite and texture window_texture.create(WINDOW_X, WINDOW_Y); window_sprite.setPosition(0, 0); // State values sf::Vector3i map_dim(50, 50, 50); sf::Vector2i view_res(WINDOW_X, WINDOW_Y); sf::Vector3f cam_dir(1.0f, 0.0f, 1.57f); sf::Vector3f cam_pos(50, 50, 50); Map* map = new Map(map_dim); RayCaster ray_caster(map, map_dim, view_res); // =============================================================================== while (window.isOpen()) { // Poll for events from the user sf::Event event; while (window.pollEvent(event)) { // If the user tries to exit the application via the GUI if (event.type == sf::Event::Closed) window.close(); if (event.type == sf::Event::KeyPressed) { // CAMERA DIRECTION if (event.key.code == sf::Keyboard::Left) { cam_dir.z -= 0.1f; std::cout << "X:" << cam_dir.x << " Y:" << cam_dir.y << " Z:" << cam_dir.z << std::endl; } if (event.key.code == sf::Keyboard::Right) { cam_dir.z += 0.1f; std::cout << "X:" << cam_dir.x << " Y:" << cam_dir.y << " Z:" << cam_dir.z << std::endl; } if (event.key.code == sf::Keyboard::Down) { cam_dir.y += 0.1f; std::cout << "X:" << cam_dir.x << " Y:" << cam_dir.y << " Z:" << cam_dir.z << std::endl; } if (event.key.code == sf::Keyboard::Up) { cam_dir.y -= 0.1f; std::cout << "X:" << cam_dir.x << " Y:" << cam_dir.y << " Z:" << cam_dir.z << std::endl; } // CAMERA POSITION if (event.key.code == sf::Keyboard::Q) { cam_pos.z -= 1; std::cout << "X:" << cam_pos.x << " Y:" << cam_pos.y << " Z:" << cam_pos.z << std::endl; } if (event.key.code == sf::Keyboard::E) { cam_pos.z += 1; std::cout << "X:" << cam_pos.x << " Y:" << cam_pos.y << " Z:" << cam_pos.z << std::endl; } if (event.key.code == sf::Keyboard::W) { cam_pos.y += 1; std::cout << "X:" << cam_pos.x << " Y:" << cam_pos.y << " Z:" << cam_pos.z << std::endl; } if (event.key.code == sf::Keyboard::S) { cam_pos.y -= 1; std::cout << "X:" << cam_pos.x << " Y:" << cam_pos.y << " Z:" << cam_pos.z << std::endl; } if (event.key.code == sf::Keyboard::A) { cam_pos.x += 1; std::cout << "X:" << cam_pos.x << " Y:" << cam_pos.y << " Z:" << cam_pos.z << std::endl; } if (event.key.code == sf::Keyboard::D) { cam_pos.x -= 1; std::cout << "X:" << cam_pos.x << " Y:" << cam_pos.y << " Z:" << cam_pos.z << std::endl; } } } // Get the elapsed time from the start of the application elapsed_time = elap_time(); // Find the time that passed between now and the last frame delta_time = elapsed_time - current_time; // Set the time for the next frame to use current_time = elapsed_time; // If the time between the last frame and now was too large (lag) // cull the time to a more acceptable value. So instead of jumping large // amounts when lagging, the app only jumps in set increments if (delta_time > 0.2f) delta_time = 0.2f; // Add the frame time to the accumulator, a running total of time we // need to account for in the application accumulator_time += delta_time; // While we have time to step while ((accumulator_time - step_size) >= step_size) { // Take away a step from the accumulator accumulator_time -= step_size; // And update the application for the amount of time alotted for one step // Update(step_size); } map->moveLight(sf::Vector2f(0.3, 0)); window.clear(sf::Color::Black); // Cast the rays and get the image sf::Color* pixel_colors = ray_caster.CastRays(cam_dir, cam_pos); // Cast it to an array of Uint8's auto out = (sf::Uint8*)pixel_colors; window_texture.update(out); window_sprite.setTexture(window_texture); window.draw(window_sprite); // Give the frame counter the frame time and draw the average frame time fps.frame(delta_time); fps.draw(&window); window.display(); } return 0; }