#pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "util.hpp" #define _USE_MATH_DEFINES #include #define CHUNK_DIM 32 #define OCT_DIM 8 struct XYZHasher { std::size_t operator()(const sf::Vector3i& k) const { return ((std::hash()(k.x) ^ (std::hash()(k.y) << 1)) >> 1) ^ (std::hash()(k.z) << 1); } }; class Octree { public: Octree() { // initialize the first stack block block_stack.push_back(new uint64_t[0x8000]); for (int i = 0; i < 0x8000; i++) { block_stack.back()[i] = 0; } }; ~Octree() {}; std::list block_stack; uint64_t stack_pos = 0x8000; uint64_t global_pos = 0; uint64_t copy_to_stack(std::vector children) { // Check for the 15 bit boundry if (stack_pos - children.size() > stack_pos) { global_pos = stack_pos; stack_pos = 0x8000; } else { stack_pos -= children.size(); } // Check for the far bit memcpy(&block_stack.front()[stack_pos + global_pos], children.data(), children.size() * sizeof(uint64_t)); // Return the bitmask encoding the index of that value // If we tripped the far bit, allocate a far index to the stack and place // it one above preferably. // And then shift the far bit to 1 // If not, shift the index to its correct place return stack_pos; }; int get_idx(sf::Vector3i voxel_pos) { return 1; } // (X, Y, Z) mask for the idx uint8_t idx_set_x_mask = 0x1; uint8_t idx_set_y_mask = 0x2; uint8_t idx_set_z_mask = 0x4; // Mask for uint8_t mask_8[8] = { 0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80 }; uint8_t count_mask_8[8]{ 0x1, 0x3, 0x7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF }; //uint8_t count_mask_8[8]{ // 0xFF, 0x7F, 0x3F, 0x1F, // 0xF, 0x7, 0x3, 0x1 //}; // With a position and the head of the stack. Traverse down the voxel hierarchy to find // the IDX and stack position of the highest resolution (maybe set resolution?) oct bool get_voxel(sf::Vector3i position) { // Init the parent stack int parent_stack_position = 0; uint64_t parent_stack[32] = {0}; // and push the head node uint64_t head = block_stack.front()[stack_pos]; parent_stack[parent_stack_position] = head; // Get the index of the first child of the head node uint64_t index = head & child_pointer_mask; // Init the idx stack uint8_t scale = 0; uint8_t idx_stack[32] = {0}; // Init the idx stack (DEBUG) std::vector> scale_stack(static_cast(log2(OCT_DIM))); // Set our initial dimension and the position at the corner of the oct to keep track of our position int dimension = OCT_DIM; sf::Vector3i quad_position(0, 0, 0); // While we are not at the required resolution // Traverse down by setting the valid/leaf mask to the subvoxel // Check to see if it is valid // Yes? // Check to see if it is a leaf // No? Break // Yes? Scale down to the next hierarchy, push the parent to the stack // // No? // Break while (dimension > 1) { // So we can be a little bit tricky here and increment our // array index that holds our masks as we build the idx. // Adding 1 for X, 2 for Y, and 4 for Z int mask_index = 0; // Do the logic steps to find which sub oct we step down into if (position.x >= (dimension / 2) + quad_position.x) { // Set our voxel position to the (0,0) of the correct oct quad_position.x += (dimension / 2); // increment the mask index and mentioned above mask_index += 1; // Set the idx to represent the move idx_stack[scale] |= idx_set_x_mask; // Debug scale_stack.at(static_cast(log2(OCT_DIM) - log2(dimension))).set(0); } if (position.y >= (dimension / 2) + quad_position.y) { quad_position.y |= (dimension / 2); mask_index += 2; idx_stack[scale] ^= idx_set_y_mask; scale_stack.at(static_cast(log2(OCT_DIM) - log2(dimension))).set(1); } if (position.z >= (dimension / 2) + quad_position.z) { quad_position.z += (dimension / 2); mask_index += 4; idx_stack[scale] |= idx_set_z_mask; scale_stack.at(static_cast(log2(OCT_DIM) - log2(dimension))).set(2); } uint64_t out1 = (head >> 16) & mask_8[mask_index]; uint64_t out2 = (head >> 24) & mask_8[mask_index]; // Check to see if we are on a valid oct if ((head >> 16) & mask_8[mask_index]) { // Check to see if it is a leaf if ((head >> 24) & mask_8[mask_index]) { // If it is, then we cannot traverse further as CP's won't have been generated return true; break; } // If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy scale++; dimension /= 2; // We also need to traverse to the correct child pointer // Count the number of non-leaf octs that come before and add it to the index to get the position int i1 = count_bits((uint8_t)(head >> 16) & count_mask_8[0]); int i2 = count_bits((uint8_t)(head >> 16) & count_mask_8[1]); int i3 = count_bits((uint8_t)(head >> 16) & count_mask_8[2]); int i4 = count_bits((uint8_t)(head >> 16) & count_mask_8[3]); int i5 = count_bits((uint8_t)(head >> 16) & count_mask_8[4]); int i6 = count_bits((uint8_t)(head >> 16) & count_mask_8[5]); int i7 = count_bits((uint8_t)(head >> 16) & count_mask_8[6]); int i8 = count_bits((uint8_t)(head >> 16) & count_mask_8[7]); int count = count_bits((uint8_t)(head >> 16) & count_mask_8[mask_index]); // Because we are getting the position at the first child we need to back up one // Or maybe it's because my count bits function is wrong... index = (head & child_pointer_mask) + count - 1; head = block_stack.front()[index]; // Increment the parent stack position and put the new oct node as the parent parent_stack_position++; parent_stack[parent_stack_position] = block_stack.front()[index]; } else { // If the oct was not valid, then no CP's exists any further // This implicitly says that if it's non-valid then it must be a leaf!! // It appears that the traversal is now working but I need // to focus on how to now take care of the end condition. // Currently it adds the last parent on the second to lowest // oct CP. Not sure if thats correct return false; break; } } std::bitset<64> t(index); auto val = t.count(); return true; } void print_block(int block_pos) { std::stringstream sss; for (int i = 0; i < (int)pow(2, 15); i++) { PrettyPrintUINT64(block_stack.front()[i], &sss); sss << "\n"; } DumpLog(&sss, "raw_data.txt"); } private: const uint64_t child_pointer_mask = 0x0000000000007fff; const uint64_t far_bit_mask = 0x8000; const uint64_t valid_mask = 0xFF0000; const uint64_t leaf_mask = 0xFF000000; const uint64_t contour_pointer_mask = 0xFFFFFF00000000; const uint64_t contour_mask = 0xFF00000000000000; }; class Map { public: Map(sf::Vector3i position); void generate_octree(); void load_unload(sf::Vector3i world_position); void load_single(sf::Vector3i world_position); sf::Vector3i getDimensions(); char *list; //sf::Vector3i dimensions; void setVoxel(sf::Vector3i position, int val); char getVoxelFromOctree(sf::Vector3i position); bool getVoxel(sf::Vector3i pos); Octree a; sf::Vector3f global_light; void test_map(); protected: private: // DEBUG int counter = 0; std::stringstream output_stream; // !DEBUG uint64_t generate_children(sf::Vector3i pos, int dim); char* voxel_data = new char[OCT_DIM * OCT_DIM * OCT_DIM]; //std::unordered_map chunk_map; double* height_map; // 2^k int chunk_radius = 6; sf::Vector3i world_to_chunk(sf::Vector3i world_coords) { return sf::Vector3i( world_coords.x / CHUNK_DIM + 1, world_coords.y / CHUNK_DIM + 1, world_coords.z / CHUNK_DIM + 1 ); } };