#pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include "Vector4.hpp" const double PI = 3.141592653589793238463; const float PI_F = 3.14159265358979f; struct fps_counter { public: fps_counter() {}; void frame(double delta_time) { // Apply 100 units of smoothing if (frame_count == 100) { frame_count = 0; fps_average = 0; } frame_count++; fps_average += (delta_time - fps_average) / frame_count; } void draw() { if (arr_pos == 200) arr_pos = 0; fps_array[arr_pos] = static_cast(1.0 / fps_average); arr_pos++; ImGui::Begin("Performance"); ImGui::PlotLines("FPS", fps_array, 200, 0, std::to_string(1.0 / fps_average).c_str(), 0.0f, 150.0f, ImVec2(200, 80)); ImGui::End(); } private: float fps_array[200]{60}; int arr_pos = 0; int frame_count = 0; double fps_average = 0; }; inline sf::Vector3f SphereToCart(sf::Vector2f i) { auto r = sf::Vector3f( (1 * sin(i.y) * cos(i.x)), (1 * sin(i.y) * sin(i.x)), (1 * cos(i.y)) ); return r; }; inline sf::Vector3f SphereToCart(sf::Vector3f i) { auto r = sf::Vector3f( (i.x * sin(i.z) * cos(i.y)), (i.x * sin(i.z) * sin(i.y)), (i.x * cos(i.z)) ); return r; }; inline sf::Vector3f CartToSphere(sf::Vector3f in) { auto r = sf::Vector3f( sqrt(in.x * in.x + in.y * in.y + in.z * in.z), atan(in.y / in.x), atan(sqrt(in.x * in.x + in.y * in.y) / in.z) ); return r; }; inline sf::Vector2f CartToNormalizedSphere(sf::Vector3f in) { auto r = sf::Vector2f( atan2(sqrt(in.x * in.x + in.y * in.y), in.z), atan2(in.y, in.x) ); return r; } inline sf::Vector3f FixOrigin(sf::Vector3f base, sf::Vector3f head) { return head - base; } inline sf::Vector3f Normalize(sf::Vector3f in) { float multiplier = sqrt(in.x * in.x + in.y * in.y + in.z * in.z); auto r = sf::Vector3f( in.x / multiplier, in.y / multiplier, in.z / multiplier ); return r; } inline float DotProduct(sf::Vector3f a, sf::Vector3f b){ return a.x * b.x + a.y * b.y + a.z * b.z; } inline float Magnitude(sf::Vector3f in){ return sqrt(in.x * in.x + in.y * in.y + in.z * in.z); } inline float AngleBetweenVectors(sf::Vector3f a, sf::Vector3f b){ return acos(DotProduct(a, b) / (Magnitude(a) * Magnitude(b))); } inline float DistanceBetweenPoints(sf::Vector3f a, sf::Vector3f b) { return sqrt(DotProduct(a, b)); } inline float DegreesToRadians(float in) { return static_cast(in * PI / 180.0f); } inline float RadiansToDegrees(float in) { return static_cast(in * 180.0f / PI); } inline std::string read_file(std::string file_name){ std::ifstream input_file(file_name); if (!input_file.is_open()){ std::cout << file_name << " could not be opened" << std::endl; return ""; } std::stringstream buf; buf << input_file.rdbuf(); input_file.close(); return buf.str(); } inline void PrettyPrintUINT64(uint64_t i, std::stringstream* ss) { *ss << "[" << std::bitset<15>(i) << "]"; *ss << "[" << std::bitset<1>(i >> 15) << "]"; *ss << "[" << std::bitset<8>(i >> 16) << "]"; *ss << "[" << std::bitset<8>(i >> 24) << "]"; *ss << "[" << std::bitset<32>(i >> 32) << "]"; } inline void PrettyPrintUINT64(uint64_t i) { std::cout << "[" << std::bitset<15>(i) << "]"; std::cout << "[" << std::bitset<1>(i >> 15) << "]"; std::cout << "[" << std::bitset<8>(i >> 16) << "]"; std::cout << "[" << std::bitset<8>(i >> 24) << "]"; std::cout << "[" << std::bitset<32>(i >> 32) << "]" << std::endl; } inline void DumpLog(std::stringstream* ss, std::string file_name) { std::ofstream log_file; log_file.open(file_name); log_file << ss->str(); log_file.close(); } #ifdef _MSC_VER # include # define __builtin_popcount _mm_popcnt_u32 # define __builtin_popcountll _mm_popcnt_u64 #endif inline int count_bits(int32_t v) { return static_cast(__builtin_popcount(v)); //v = v - ((v >> 1) & 0x55555555); // reuse input as temporary //v = (v & 0x33333333) + ((v >> 2) & 0x33333333); // temp //return (((v + (v >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24; // count } inline int count_bits(int64_t v) { return static_cast(__builtin_popcountll(v)); //int32_t left = (int32_t)(v); //int32_t right = (int32_t)(v >> 32); //left = left - ((left >> 1) & 0x55555555); // reuse input as temporary //left = (left & 0x33333333) + ((left >> 2) & 0x33333333); // temp //left = ((left + (left >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; // count //right = right - ((right >> 1) & 0x55555555); // reuse input as temporary //right = (right & 0x33333333) + ((right >> 2) & 0x33333333); // temp //right = ((right + (right >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; // count //return left + right; } inline void SetBit(int position, char* c) { *c |= (uint64_t)1 << position; } inline void FlipBit(int position, char* c) { *c ^= (uint64_t)1 << position; } inline int GetBit(int position, char* c) { return (*c >> position) & (uint64_t)1; } inline void SetBit(int position, uint64_t* c) { *c |= (uint64_t)1 << position; } inline void FlipBit(int position, uint64_t* c) { *c ^= (uint64_t)1 << position; } inline int GetBit(int position, uint64_t* c) { return (*c >> position) & (uint64_t)1; } inline bool CheckLeafSign(const uint64_t descriptor) { uint64_t valid_mask = 0xFF0000; // Return true if all 1's, false if contiguous 0's if ((descriptor & valid_mask) == valid_mask) { return true; } if ((descriptor & valid_mask) == 0) { return false; } // Error out, something funky abort(); } inline bool CheckContiguousValid(const uint64_t c) { uint64_t bitmask = 0xFF0000; return (c & bitmask) == bitmask; } inline bool IsLeaf(const uint64_t descriptor) { uint64_t leaf_mask = 0xFF000000; uint64_t valid_mask = 0xFF0000; // Check for contiguous valid values of either 0's or 1's if (((descriptor & valid_mask) == valid_mask) || ((descriptor & valid_mask) == 0)) { // Check for a full leaf mask // Only if valid and leaf are contiguous, then it's a leaf if ((descriptor & leaf_mask) == leaf_mask) return true; } return false; }