#include #include #include #include #include #include #ifdef linux #include #include #elif defined _WIN32 #include #include #include #include #elif defined TARGET_OS_MAC # include # include #endif #include "TestPlatform.cpp" #include "Map.h" #include "Curses.h" #include "util.hpp" #include "RayCaster.h" const int WINDOW_X = 150; const int WINDOW_Y = 150; std::string read_file(std::string file_name){ std::ifstream input_file(file_name); if (!input_file.is_open()){ std::cout << file_name << " could not be opened" << std::endl; return nullptr; } std::stringstream buf; buf << input_file.rdbuf(); return buf.str(); } int main(){ int error = 0; // ===================================================================== // // ==== Opencl setup // Get the number of platforms cl_uint platform_count = 0; clGetPlatformIDs(0, nullptr, &platform_count); // Fetch the platforms std::vector platformIds(platform_count); clGetPlatformIDs(platform_count, platformIds.data(), nullptr); // Print out this machines info std::cout << "============ Hardware info =================" << std::endl; for (unsigned int i = 0; i < platform_count; i++) { std::cout << "--Platform: " << i << std::endl; char platform[128]; char version[128]; clGetPlatformInfo(platformIds[i], CL_PLATFORM_NAME, 128, platform, NULL); clGetPlatformInfo(platformIds[i], CL_PLATFORM_VERSION, 128, version, NULL); std::cout << platform << "\n"; std::cout << version << "\n\n"; // get the number of devices, fetch them, choose the first one cl_uint deviceIdCount = 0; error = clGetDeviceIDs(platformIds[i], CL_DEVICE_TYPE_ALL, 0, nullptr, &deviceIdCount); std::vector deviceIds(deviceIdCount); for (int q = 0; q < deviceIdCount; q++) { std::cout << "++++Device " << q << std::endl; error = clGetDeviceIDs(platformIds[i], CL_DEVICE_TYPE_ALL, deviceIdCount, deviceIds.data(), NULL); clGetDeviceInfo(deviceIds[q], CL_DEVICE_NAME, 128, platform, NULL); clGetDeviceInfo(deviceIds[q], CL_DEVICE_VERSION, 128, version, NULL); std::cout << platform << "\n"; std::cout << version << "\n\n"; } } std::cout << "============================================" << std::endl; cl_uint deviceIdCount = 0; std::vector deviceIds; // Try to get a GPU first error = clGetDeviceIDs(platformIds[1], CL_DEVICE_TYPE_GPU, 0, nullptr, &deviceIdCount); if (deviceIdCount == 0) { std::cout << "couldn't acquire a GPU, falling back to CPU" << std::endl; error = clGetDeviceIDs(platformIds[1], CL_DEVICE_TYPE_CPU, 0, nullptr, &deviceIdCount); deviceIds.resize(deviceIdCount); error = clGetDeviceIDs(platformIds[1], CL_DEVICE_TYPE_CPU, deviceIdCount, deviceIds.data(), NULL); } else { std::cout << "acquired GPU cl target" << std::endl; deviceIds.resize(deviceIdCount); clGetDeviceIDs (platformIds[1], CL_DEVICE_TYPE_GPU, deviceIdCount, deviceIds.data (), nullptr); } if (error != 0){ std::cout << "Err: clGetDeviceIDs returned: " << error << std::endl; return error; } // Hurray for standards! // Setup the context properties to grab the current GL context #ifdef linux cl_context_properties context_properties[] = { CL_GL_CONTEXT_KHR, (cl_context_properties) glXGetCurrentContext(), CL_GLX_DISPLAY_KHR, (cl_context_properties) glXGetCurrentDisplay(), CL_CONTEXT_PLATFORM, (cl_context_properties) platform, 0 }; #elif defined _WIN32 //cl_context_properties context_properties[] = { // CL_CONTEXT_PLATFORM, (cl_context_properties) platformIds[0], // CL_GL_CONTEXT_KHR, (cl_context_properties) wglGetCurrentContext(), // CL_WGL_HDC_KHR, (cl_context_properties) wglGetCurrentDC(), // 0 //}; HGLRC hGLRC = wglGetCurrentContext(); HDC hDC = wglGetCurrentDC(); cl_context_properties context_properties[] = { CL_CONTEXT_PLATFORM, (cl_context_properties)platformIds[1], CL_GL_CONTEXT_KHR, (cl_context_properties)hGLRC, CL_WGL_HDC_KHR, (cl_context_properties)hDC, 0 }; #elif defined TARGET_OS_MAC CGLContextObj glContext = CGLGetCurrentContext(); CGLShareGroupObj shareGroup = CGLGetShareGroup(glContext); cl_context_properties context_properties[] = { CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE, (cl_context_properties)shareGroup, 0 }; #endif // Create our shared context auto context = clCreateContext( context_properties, 1, &deviceIds[0], nullptr, nullptr, &error ); //cl_device_id devices[32]; //size_t size; //clGetGLContextInfoKHR(context_properties, CL_DEVICES_FOR_GL_CONTEXT_KHR, // 32 * sizeof(cl_device_id), devices, &size); if (error != 0){ std::cout << "Err: clCreateContext returned: " << error << std::endl; return error; } // And the cl command queue auto commandQueue = clCreateCommandQueue(context, deviceIds[0], 0, &error); if (error != 0){ std::cout << "Err: clCreateCommandQueue returned: " << error << std::endl; return error; } // At this point the shared GL/CL context is up and running // ====================================================================== // // ========== Kernel setup & compilation // Load in the kernel, and c stringify it std::string kernel_source; kernel_source = read_file("../kernels/kernel.txt"); const char* kernel_source_c_str = kernel_source.c_str(); size_t kernel_source_size = strlen(kernel_source_c_str); // Load the source into CL's data structure cl_program kernel_program = clCreateProgramWithSource( context, 1, &kernel_source_c_str, &kernel_source_size, &error ); if (error != 0){ std::cout << "Err: clCreateProgramWithSource returned: " << error << std::endl; return error; } // Try and build the program error = clBuildProgram(kernel_program, 1, &deviceIds[0], NULL, NULL, NULL); // Check to see if it errored out if (error == CL_BUILD_PROGRAM_FAILURE){ // Get the size of the queued log size_t log_size; clGetProgramBuildInfo(kernel_program, deviceIds[0], CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size); char *log = new char[log_size]; // Grab the log clGetProgramBuildInfo(kernel_program, deviceIds[0], CL_PROGRAM_BUILD_LOG, log_size, log, NULL); std::cout << "Err: clBuildProgram returned: " << error << std::endl; std::cout << log << std::endl; return error; } // Done initializing the kernel cl_kernel finished_kernel = clCreateKernel(kernel_program, "kernel_name", &error); if (error != 0){ std::cout << "Err: clCreateKernel returned: " << error << std::endl; return error; } }; float elap_time(){ static std::chrono::time_point start; static bool started = false; if (!started){ start = std::chrono::system_clock::now(); started = true; } std::chrono::time_point now = std::chrono::system_clock::now(); std::chrono::duration elapsed_time = now - start; return elapsed_time.count(); } sf::Sprite window_sprite; sf::Texture window_texture; // Y: -1.57 is straight up // Y: 1.57 is straight down void test_ray_reflection(){ sf::Vector3f r(0.588, -0.78, -0.196); sf::Vector3f i(0, 0.928, 0.37); // is this needed? free spin but bounded 0 < z < pi if (i.z > PI) i.z -= PI; else if (i.z < 0) i.z += PI; std::cout << AngleBetweenVectors(r, i); return; } int main0() { // Initialize the render window Curses curse(sf::Vector2i(5, 5), sf::Vector2i(WINDOW_X, WINDOW_Y)); sf::RenderWindow window(sf::VideoMode(WINDOW_X, WINDOW_Y), "SFML"); // The step size in milliseconds between calls to Update() // Lets set it to 16.6 milliseonds (60FPS) float step_size = 0.0166f; // Timekeeping values for the loop double frame_time = 0.0, elapsed_time = 0.0, delta_time = 0.0, accumulator_time = 0.0, current_time = 0.0; fps_counter fps; // ============================= RAYCASTER SETUP ================================== // Setup the sprite and texture window_texture.create(WINDOW_X, WINDOW_Y); window_sprite.setPosition(0, 0); // State values sf::Vector3i map_dim(100, 100, 100); sf::Vector2i view_res(WINDOW_X, WINDOW_Y); sf::Vector3f cam_dir(1.0f, 0.0f, 1.57f); sf::Vector3f cam_pos(50, 50, 50); sf::Vector3f cam_vec(0, 0, 0); Map* map = new Map(map_dim); RayCaster ray_caster(map, map_dim, view_res); // =============================================================================== // Mouse capture sf::Vector2i deltas; sf::Vector2i fixed(window.getSize()); bool mouse_enabled = true; while (window.isOpen()) { // Poll for events from the user sf::Event event; while (window.pollEvent(event)) { // If the user tries to exit the application via the GUI if (event.type == sf::Event::Closed) window.close(); } cam_vec.x = 0; cam_vec.y = 0; cam_vec.z = 0; if (sf::Keyboard::isKeyPressed(sf::Keyboard::Q)) { cam_vec.z = 1; } if (sf::Keyboard::isKeyPressed(sf::Keyboard::E)) { cam_vec.z = -1; } if (sf::Keyboard::isKeyPressed(sf::Keyboard::W)) { cam_vec.y = 1; } if (sf::Keyboard::isKeyPressed(sf::Keyboard::S)) { cam_vec.y = -1; } if (sf::Keyboard::isKeyPressed(sf::Keyboard::A)) { cam_vec.x = 1; } if (sf::Keyboard::isKeyPressed(sf::Keyboard::D)) { cam_vec.x = -1; } if (sf::Keyboard::isKeyPressed(sf::Keyboard::Left)) { cam_dir.z = -0.1f; } if (sf::Keyboard::isKeyPressed(sf::Keyboard::Right)) { cam_vec.z = +0.1f; } if (sf::Keyboard::isKeyPressed(sf::Keyboard::Down)) { cam_vec.y = +0.1f; } if (sf::Keyboard::isKeyPressed(sf::Keyboard::Up)) { cam_vec.y = -0.1f; } deltas = fixed - sf::Mouse::getPosition(); if (deltas != sf::Vector2i(0, 0) && mouse_enabled == true) { // Mouse movement sf::Mouse::setPosition(fixed); cam_dir.y -= deltas.y / 300.0f; cam_dir.z -= deltas.x / 300.0f; } cam_pos.x += cam_vec.x / 1.0; cam_pos.y += cam_vec.y / 1.0; cam_pos.z += cam_vec.z / 1.0; // if (cam_vec.x > 0.0f) // cam_vec.x -= 0.1; // else if (cam_vec.x < 0.0f) // cam_vec.x += 0.1; // // if (cam_vec.y > 0.0f) // cam_vec.y -= 0.1; // else if (cam_vec.y < 0.0f) // cam_vec.y += 0.1; // // if (cam_vec.z > 0.0f) // cam_vec.z -= 0.1; // else if (cam_vec.z < 0.0f) // cam_vec.z += 0.1; std::cout << cam_vec.x << " : " << cam_vec.y << " : " << cam_vec.z << std::endl; // Time keeping elapsed_time = elap_time(); delta_time = elapsed_time - current_time; current_time = elapsed_time; if (delta_time > 0.2f) delta_time = 0.2f; accumulator_time += delta_time; while ((accumulator_time - step_size) >= step_size) { accumulator_time -= step_size; // Update cycle curse.Update(delta_time); } // Fps cycle // map->moveLight(sf::Vector2f(0.3, 0)); window.clear(sf::Color::Black); // Cast the rays and get the image sf::Color* pixel_colors = ray_caster.CastRays(cam_dir, cam_pos); for (int i = 0; i < WINDOW_X * WINDOW_Y; i++) { Curses::Tile t(sf::Vector2i(i % WINDOW_X, i / WINDOW_X)); Curses::Slot s(L'\u0045', pixel_colors[i], sf::Color::Black); t.push_back(s); curse.setTile(t); } // Cast it to an array of Uint8's auto out = (sf::Uint8*)pixel_colors; window_texture.update(out); window_sprite.setTexture(window_texture); window.draw(window_sprite); curse.Render(); // Give the frame counter the frame time and draw the average frame time fps.frame(delta_time); fps.draw(&window); window.display(); } return 0; }