__kernel void min_kern( global char* map, global int3* map_dim, global int2* resolution, global float3* projection_matrix, global float3* cam_dir, global float3* cam_pos, __write_only image2d_t image ){ size_t id = get_global_id(0); int2 pixel = {id % resolution->x, id / resolution->x}; float3 ray_dir = projection_matrix[pixel.x + resolution->x * pixel.y]; //printf("%i === %f, %f, %f\n", id, ray_dir.x, ray_dir.y, ray_dir.z); // Y axis, pitch //ray_dir.x = ray_dir.z * sin(cam_dir->y) + ray_dir.x * cos(cam_dir->y); //ray_dir.y = ray_dir.y; //ray_dir.z = ray_dir.z * cos(cam_dir->y) - ray_dir.x * sin(cam_dir->y); ray_dir = (float3)( ray_dir.z * sin(cam_dir->y) + ray_dir.x * cos(cam_dir->y), ray_dir.y, ray_dir.z * cos(cam_dir->y) - ray_dir.x * sin(cam_dir->y) ); // Z axis, yaw //ray_dir.x = ray_dir.x * cos(cam_dir->z) - ray_dir.y * sin(cam_dir->z); //ray_dir.y = ray_dir.x * sin(cam_dir->z) + ray_dir.y * cos(cam_dir->z); //ray_dir.z = ray_dir.z; ray_dir = (float3)( ray_dir.x * cos(cam_dir->z) - ray_dir.y * sin(cam_dir->z), ray_dir.x * sin(cam_dir->z) + ray_dir.y * cos(cam_dir->z), ray_dir.z ); // Setup the voxel step based on what direction the ray is pointing int3 voxel_step = {1, 1, 1}; voxel_step.x *= (ray_dir.x > 0) - (ray_dir.x < 0); voxel_step.y *= (ray_dir.y > 0) - (ray_dir.y < 0); voxel_step.z *= (ray_dir.z > 0) - (ray_dir.z < 0); // Setup the voxel coords from the camera origin int3 voxel = { floor(cam_pos->x), floor(cam_pos->y), floor(cam_pos->z) }; // Delta T is the units a ray must travel along an axis in order to // traverse an integer split float3 delta_t = { fabs(1.0f / ray_dir.x), fabs(1.0f / ray_dir.y), fabs(1.0f / ray_dir.z) }; // Intersection T is the collection of the next intersection points // for all 3 axis XYZ. float3 intersection_t = { delta_t.x, delta_t.y, delta_t.z }; int dist = 0; int face = -1; // X:0, Y:1, Z:2 // Andrew Woo's raycasting algo do { if ((intersection_t.x) < (intersection_t.y)) { if ((intersection_t.x) < (intersection_t.z)) { face = 0; voxel.x += voxel_step.x; intersection_t.x = intersection_t.x + delta_t.x; } else { face = 2; voxel.z += voxel_step.z; intersection_t.z = intersection_t.z + delta_t.z; } } else { if ((intersection_t.y) < (intersection_t.z)) { face = 1; voxel.y += voxel_step.y; intersection_t.y = intersection_t.y + delta_t.y; } else { face = 2; voxel.z += voxel_step.z; intersection_t.z = intersection_t.z + delta_t.z; } } // If the ray went out of bounds if (voxel.z >= map_dim->z) { write_imagef(image, pixel, (float4)(.5, .50, .00, 1)); return; } if (voxel.x >= map_dim->x) { write_imagef(image, pixel, (float4)(.00, .00, .99, 1)); return; } if (voxel.y >= map_dim->x) { write_imagef(image, pixel, (float4)(.00, .44, .00, 1)); return; } if (voxel.x < 0) { write_imagef(image, pixel, (float4)(.99, .00, .99, 1)); return; } if (voxel.y < 0) { write_imagef(image, pixel, (float4)(.99, .99, .00, 1)); return; } if (voxel.z < 0) { write_imagef(image, pixel, (float4)(.00, .99, .99, 1)); return; } // If we hit a voxel int index = voxel.x + map_dim->x * (voxel.y + map_dim->z * voxel.z); int voxel_data = map[index]; if (id == 240000) printf("%i, %i, %i\n", voxel.x, voxel.y, voxel.z); switch (voxel_data) { case 1: write_imagef(image, pixel, (float4)(.50, .00, .00, 1)); return; case 2: write_imagef(image, pixel, (float4)(.00, .50, .40, 1.00)); if (id == 249000) printf("%i\n", voxel_data); return; case 3: write_imagef(image, pixel, (float4)(.00, .00, .50, 1.00)); return; case 4: write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00)); return; case 5: write_imagef(image, pixel, (float4)(.10, .30, .80, 1.00)); return; case 6: write_imagef(image, pixel, (float4)(.30, .80, .10, 1.00)); return; } dist++; } while (dist < 600); write_imagef(image, pixel, (float4)(.00, .00, .00, .00)); return; //printf("%i %i -- ", id, map[id]); //printf("%i, %i, %i\n", map_dim->x, map_dim->y, map_dim->z); //printf("\n%i\nX: %f\nY: %f\nZ: %f\n", id, projection_matrix[id].x, projection_matrix[id].y, projection_matrix[id].z); //printf("%f, %f, %f\n", cam_dir->x, cam_dir->y, cam_dir->z); //printf("%f, %f, %f\n", cam_pos->x, cam_pos->y, cam_pos->z); }