You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

127 lines
3.6 KiB

float4 white_light(float4 input, float3 light, int3 mask) {
input.w = input.w + acos(
dot(
normalize(light),
normalize(fabs(convert_float3(mask)))
)
) / 2;
return input;
}
__kernel void min_kern(
global char* map,
global int3* map_dim,
global int2* resolution,
global float3* projection_matrix,
global float2* cam_dir,
global float3* cam_pos,
global float* lights,
global int* light_count,
__write_only image2d_t image
){
size_t id = get_global_id(0);
int2 pixel = {id % (*resolution).x, id / (*resolution).x};
float3 ray_dir = projection_matrix[pixel.x + (*resolution).x * pixel.y];
ray_dir = (float3)(
ray_dir.z * sin((*cam_dir).x) + ray_dir.x * cos((*cam_dir).x),
ray_dir.y,
ray_dir.z * cos((*cam_dir).x) - ray_dir.x * sin((*cam_dir).x)
);
ray_dir = (float3)(
ray_dir.x * cos((*cam_dir).y) - ray_dir.y * sin((*cam_dir).y),
ray_dir.x * sin((*cam_dir).y) + ray_dir.y * cos((*cam_dir).y),
ray_dir.z
);
// Setup the voxel step based on what direction the ray is pointing
int3 voxel_step = {1, 1, 1};
voxel_step *= (ray_dir > 0) - (ray_dir < 0);
/*voxel_step.x *= (ray_dir.x > 0) - (ray_dir.x < 0);
voxel_step.y *= (ray_dir.y > 0) - (ray_dir.y < 0);
voxel_step.z *= (ray_dir.z > 0) - (ray_dir.z < 0);*/
// Setup the voxel coords from the camera origin
int3 voxel = convert_int3(*cam_pos);
// Delta T is the units a ray must travel along an axis in order to
// traverse an integer split
float3 delta_t = fabs(1.0f / ray_dir);
// Intersection T is the collection of the next intersection points
// for all 3 axis XYZ.
float3 intersection_t = delta_t;
int2 randoms = { 3, 14 };
uint seed = randoms.x + id;
uint t = seed ^ (seed << 11);
uint result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8));
int max_dist = 500 + result % 50;
int dist = 0;
int3 mask = { 0, 0, 0 };
// Andrew Woo's raycasting algo
do {
mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
float3 thing = delta_t * fabs(convert_float3(mask.xyz));
intersection_t += delta_t * fabs(convert_float3(mask.xyz));
voxel.xyz += voxel_step.xyz * mask.xyz;
// If the ray went out of bounds
int3 overshoot = voxel <= *map_dim;
int3 undershoot = voxel > 0;
if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0){
write_imagef(image, pixel, (float4)(.73, .81, .89, 1.0));
return;
}
if (undershoot.z == 0) {
write_imagef(image, pixel, (float4)(.14, .30, .50, 1.0));
return;
}
// If we hit a voxel
int index = voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * voxel.z);
int voxel_data = map[index];
if (voxel_data != 0) {
switch (voxel_data) {
case 1:
write_imagef(image, pixel, (float4)(.50, .00, .00, 1));
return;
case 2:
write_imagef(image, pixel, (float4)(.00, .50, .40, 1.00));
return;
case 3:
write_imagef(image, pixel, (float4)(.00, .00, .50, 1.00));
return;
case 4:
write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00));
return;
case 5:
//write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00));
write_imagef(image, pixel, white_light((float4)(.25, .32, .14, 0.2), (float3)(lights[7], lights[8], lights[9]), mask));
return;
case 6:
write_imagef(image, pixel, (float4)(.30, .80, .10, 1.00));
return;
}
}
dist++;
} while (dist < max_dist);
write_imagef(image, pixel, (float4)(.73, .81, .89, 1.0));
return;
}