|
|
|
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
|
|
|
|
use std::collections::{HashMap, HashSet};
|
|
|
|
use vulkano::buffer::{BufferAccess, BufferUsage, ImmutableBuffer, CpuAccessibleBuffer};
|
|
|
|
use std::sync::Arc;
|
|
|
|
use vulkano::format::{ClearValue, Format, R8Unorm};
|
|
|
|
use vulkano::framebuffer::{FramebufferAbstract, Framebuffer, RenderPass, RenderPassAbstract};
|
|
|
|
use vulkano::device::{Device, Queue};
|
|
|
|
use vulkano::instance::PhysicalDevice;
|
|
|
|
use vulkano::image::immutable::ImmutableImage;
|
|
|
|
use vulkano::image::{Dimensions, ImageAccess, ImageDimensions, SwapchainImage, ImageUsage, AttachmentImage, ImageLayout};
|
|
|
|
use vulkano::sampler::{Sampler, SamplerAddressMode, MipmapMode, Filter};
|
|
|
|
use vulkano::descriptor::DescriptorSet;
|
|
|
|
use vulkano::descriptor::descriptor_set::PersistentDescriptorSet;
|
|
|
|
use std::path::PathBuf;
|
|
|
|
use image::GenericImageView;
|
|
|
|
use std::iter::FromIterator;
|
|
|
|
use vulkano::swapchain::Capabilities;
|
|
|
|
use winit::Window;
|
|
|
|
use vulkano::pipeline::viewport::Viewport;
|
|
|
|
use vulkano::descriptor::descriptor::DescriptorDescTy::TexelBuffer;
|
|
|
|
use crate::canvas::canvas_frame::CanvasFrame;
|
|
|
|
use std::hash::Hash;
|
|
|
|
use crate::canvas::canvas_text::{CanvasText, CanvasTextHandle};
|
|
|
|
|
|
|
|
use crate::canvas::canvas_buffer::{CanvasImage, CanvasTexture, CanvasTextCache};
|
|
|
|
use crate::util::vertex_3d::Vertex3D;
|
|
|
|
use vulkano::pipeline::depth_stencil::{StencilFaceFlags, DynamicStencilValue};
|
|
|
|
use crate::canvas::shader::common::{CompiledGraphicsPipeline, CompiledGraphicsPipelineHandle};
|
|
|
|
use crate::canvas::shader::generic_shader::GenericShader;
|
|
|
|
|
|
|
|
/// A drawable object can be passed into a CanvasFrame to be rendered
|
|
|
|
/// Very generic implementation. (N % 2 == 0) vertices, ditto for texture coords, and rgba color
|
|
|
|
/// Provides Image and Texture handles for drawing
|
|
|
|
/// Split out to two drawables?
|
|
|
|
///
|
|
|
|
pub trait Drawable {
|
|
|
|
fn get_vertices(&self) -> Vec<(f32, f32, f32)>;
|
|
|
|
fn get_color(&self) -> (f32, f32, f32, f32);
|
|
|
|
fn get_ti_coords(&self) -> Vec<(f32, f32)>;
|
|
|
|
|
|
|
|
fn get_texture_handle(&self) -> Option<Arc<CanvasTextureHandle>>;
|
|
|
|
fn get_image_handle(&self) -> Option<Arc<CanvasImageHandle>>;
|
|
|
|
// fn get_text_handle(&self) -> Option<Arc<CanvasTextHandle>>;
|
|
|
|
|
|
|
|
fn collect(&self) -> Vec<Vertex3D> {
|
|
|
|
let color = self.get_color();
|
|
|
|
self.get_vertices().iter().zip(self.get_ti_coords().iter()).map(|(a, b)|
|
|
|
|
Vertex3D {
|
|
|
|
v_position: [a.0, a.1, a.2],
|
|
|
|
color: [color.0, color.1, color.2, color.3],
|
|
|
|
ti_position: [b.0, b.1],
|
|
|
|
}).collect()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Typed wrapper for a u32 texture handle (index id)
|
|
|
|
#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
|
|
|
|
pub struct CanvasTextureHandle {
|
|
|
|
pub handle: u32
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Typed wrapper for a u32 image handle (index id)
|
|
|
|
#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
|
|
|
|
pub struct CanvasImageHandle {
|
|
|
|
pub handle: u32
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Canvas state is used for storage of texture and image buffers in addition to vertex buffers
|
|
|
|
/// Canvas state also contains logic for writing the stored buffers to the command_buffer
|
|
|
|
#[derive(Clone)]
|
|
|
|
pub struct CanvasState {
|
|
|
|
/// Generated during new()
|
|
|
|
dynamic_state: DynamicState,
|
|
|
|
/// Generated during new()
|
|
|
|
sampler: Arc<Sampler>,
|
|
|
|
|
|
|
|
// hold the image, texture, and shader buffers the same was as we do CompuState
|
|
|
|
image_buffers: Vec<Arc<CanvasImage>>,
|
|
|
|
texture_buffers: Vec<Arc<CanvasTexture>>,
|
|
|
|
shader_buffers: Vec<Arc<Box<dyn CompiledGraphicsPipeline>>>,
|
|
|
|
text_buffers: Vec<Arc<(CanvasText, CanvasTextCache)>>,
|
|
|
|
|
|
|
|
// Hold onto the vertices we get from the Compu and Canvas Frames
|
|
|
|
// When the run comes around, push the vertices to the GPU
|
|
|
|
colored_drawables: Vec<Vertex3D>,
|
|
|
|
colored_vertex_buffer: Vec<Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync)>>,
|
|
|
|
|
|
|
|
textured_drawables: HashMap<Arc<CanvasTextureHandle>, Vec<Vec<Vertex3D>>>,
|
|
|
|
textured_vertex_buffer: HashMap<Arc<CanvasTextureHandle>, Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync)>>,
|
|
|
|
|
|
|
|
image_drawables: HashMap<Arc<CanvasImageHandle>, Vec<Vec<Vertex3D>>>,
|
|
|
|
image_vertex_buffer: HashMap<Arc<CanvasImageHandle>, Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync)>>,
|
|
|
|
|
|
|
|
// Looks like we gotta hold onto the queue for managing textures
|
|
|
|
queue: Arc<Queue>,
|
|
|
|
device: Arc<Device>,
|
|
|
|
render_pass: Arc<dyn RenderPassAbstract + Send + Sync>,
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
impl CanvasState {
|
|
|
|
/// This method is called once during initialization, then again whenever the window is resized
|
|
|
|
pub fn window_size_dependent_setup(&mut self, images: &[Arc<SwapchainImage<Window>>])
|
|
|
|
-> Vec<Arc<dyn FramebufferAbstract + Send + Sync>> {
|
|
|
|
let dimensions = images[0].dimensions();
|
|
|
|
|
|
|
|
self.dynamic_state.viewports =
|
|
|
|
Some(vec![Viewport {
|
|
|
|
origin: [0.0, 0.0],
|
|
|
|
dimensions: [dimensions.width() as f32, dimensions.height() as f32],
|
|
|
|
depth_range: 0.0..1.0,
|
|
|
|
}]);
|
|
|
|
|
|
|
|
let dimensions = [dimensions.width(), dimensions.height()];
|
|
|
|
let depth_buffer = AttachmentImage::transient(self.device.clone(), dimensions, Format::D32Sfloat_S8Uint).unwrap();
|
|
|
|
|
|
|
|
images.iter().map(|image| {
|
|
|
|
Arc::new(
|
|
|
|
Framebuffer::start(self.render_pass.clone())
|
|
|
|
.add(image.clone()).unwrap()
|
|
|
|
.add(depth_buffer.clone()).unwrap()
|
|
|
|
.build().unwrap()
|
|
|
|
) as Arc<dyn FramebufferAbstract + Send + Sync>
|
|
|
|
}).collect::<Vec<_>>()
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Creates a Canvas State. Which at this point is pretty empty
|
|
|
|
pub fn new(queue: Arc<Queue>,
|
|
|
|
device: Arc<Device>,
|
|
|
|
physical: PhysicalDevice,
|
|
|
|
capabilities: Capabilities) -> CanvasState {
|
|
|
|
let format = capabilities.supported_formats[0].0;
|
|
|
|
|
|
|
|
let render_pass = Arc::new(vulkano::single_pass_renderpass!(
|
|
|
|
device.clone(),
|
|
|
|
|
|
|
|
// Attachments are outgoing like f_color
|
|
|
|
attachments: {
|
|
|
|
// `color` is a custom name we give to the first and only attachment.
|
|
|
|
color: {
|
|
|
|
// `load: Clear` means that we ask the GPU to clear the content of this
|
|
|
|
// attachment at the start of the drawing.
|
|
|
|
load: Clear,
|
|
|
|
// `store: Store` means that we ask the GPU to store the output of the draw
|
|
|
|
// in the actual image. We could also ask it to discard the result.
|
|
|
|
store: Store,
|
|
|
|
// `format: <ty>` indicates the type of the format of the image. This has to
|
|
|
|
// be one of the types of the `vulkano::format` module (or alternatively one
|
|
|
|
// of your structs that implements the `FormatDesc` trait). Here we use the
|
|
|
|
// same format as the swapchain.
|
|
|
|
format: format,
|
|
|
|
samples: 1,
|
|
|
|
},
|
|
|
|
|
|
|
|
depth: {
|
|
|
|
load: Clear,
|
|
|
|
store: DontCare,
|
|
|
|
format: Format::D32Sfloat_S8Uint,
|
|
|
|
samples: 1,
|
|
|
|
}
|
|
|
|
},
|
|
|
|
pass: {
|
|
|
|
// We use the attachment named `color` as the one and only color attachment.
|
|
|
|
color: [color],
|
|
|
|
// No depth-stencil attachment is indicated with empty brackets.
|
|
|
|
depth_stencil: {depth}
|
|
|
|
}
|
|
|
|
).unwrap());
|
|
|
|
|
|
|
|
|
|
|
|
CanvasState {
|
|
|
|
dynamic_state: DynamicState {
|
|
|
|
line_width: None,
|
|
|
|
viewports: None,
|
|
|
|
scissors: None,
|
|
|
|
compare_mask: Some(DynamicStencilValue {
|
|
|
|
face: StencilFaceFlags::StencilFrontAndBack,
|
|
|
|
value: 0xFF,
|
|
|
|
}),
|
|
|
|
write_mask: Some(DynamicStencilValue {
|
|
|
|
face: StencilFaceFlags::StencilFrontAndBack,
|
|
|
|
value: 0xFF,
|
|
|
|
}),
|
|
|
|
reference: Some(DynamicStencilValue {
|
|
|
|
face: StencilFaceFlags::StencilFrontAndBack,
|
|
|
|
value: 0xFF,
|
|
|
|
}),
|
|
|
|
},
|
|
|
|
sampler: Sampler::new(device.clone(),
|
|
|
|
Filter::Linear, Filter::Linear,
|
|
|
|
MipmapMode::Nearest,
|
|
|
|
SamplerAddressMode::Repeat, SamplerAddressMode::Repeat,
|
|
|
|
SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap(),
|
|
|
|
image_buffers: vec![],
|
|
|
|
texture_buffers: vec![],
|
|
|
|
shader_buffers: vec![],
|
|
|
|
|
|
|
|
text_buffers: vec![],
|
|
|
|
colored_drawables: vec![],
|
|
|
|
colored_vertex_buffer: vec![],
|
|
|
|
textured_drawables: HashMap::default(),
|
|
|
|
textured_vertex_buffer: Default::default(),
|
|
|
|
image_drawables: Default::default(),
|
|
|
|
image_vertex_buffer: Default::default(),
|
|
|
|
|
|
|
|
queue: queue.clone(),
|
|
|
|
device: device.clone(),
|
|
|
|
render_pass: render_pass.clone(),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Using the dimensions and suggested usage, load a CanvasImage and return it's handle
|
|
|
|
pub fn create_text_buffers(&mut self, dimensions: (u32, u32)) -> Arc<CanvasTextHandle> {
|
|
|
|
let handle = Arc::new(CanvasTextHandle { handle: self.text_buffers.len() as u32 });
|
|
|
|
//
|
|
|
|
// let text = CanvasText {
|
|
|
|
// handle: handle.clone(),
|
|
|
|
// buffer: ImmutableImage::uninitialized(
|
|
|
|
// self.device.clone(),
|
|
|
|
// Dimensions::Dim2d { width: CACHE_WIDTH as u32, height: CACHE_HEIGHT as u32 },
|
|
|
|
// R8Unorm,
|
|
|
|
// 1,
|
|
|
|
// ImageUsage {
|
|
|
|
// sampled: true,
|
|
|
|
// transfer_destination: true,
|
|
|
|
// .. ImageUsage::none()
|
|
|
|
// },
|
|
|
|
// ImageLayout::General,
|
|
|
|
// Some(self.queue.family())
|
|
|
|
// ).unwrap().0,
|
|
|
|
// size: dimensions,
|
|
|
|
// };
|
|
|
|
//
|
|
|
|
// let text_cache = CanvasTextCache {
|
|
|
|
// handle: handle.clone(),
|
|
|
|
// buffer: CpuAccessibleBuffer::<[u8]>::from_iter(
|
|
|
|
// self.device.clone(),
|
|
|
|
// BufferUsage::all(),
|
|
|
|
// cache_pixel_buffer.iter().cloned()
|
|
|
|
// ).unwrap(),
|
|
|
|
// size: dimensions,
|
|
|
|
// };
|
|
|
|
//
|
|
|
|
// self.text_buffers.push(Arc::new((text, text_cache)));
|
|
|
|
//
|
|
|
|
handle
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Using the dimensions and suggested usage, load a CanvasImage and return it's handle
|
|
|
|
pub fn create_image(&mut self, dimensions: (u32, u32), usage: ImageUsage) -> Arc<CanvasImageHandle> {
|
|
|
|
let handle = Arc::new(CanvasImageHandle { handle: self.image_buffers.len() as u32 });
|
|
|
|
|
|
|
|
let image = CanvasImage {
|
|
|
|
handle: handle.clone(),
|
|
|
|
buffer: AttachmentImage::with_usage(
|
|
|
|
self.device.clone(),
|
|
|
|
[dimensions.0, dimensions.1],
|
|
|
|
Format::R8G8B8A8Uint,
|
|
|
|
usage).unwrap(),
|
|
|
|
size: dimensions,
|
|
|
|
};
|
|
|
|
|
|
|
|
self.image_buffers.push(Arc::new(image));
|
|
|
|
|
|
|
|
handle
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Return the image buffer from an input image handle
|
|
|
|
pub fn get_image(&self, image_handle: Arc<CanvasImageHandle>) -> Arc<AttachmentImage> {
|
|
|
|
self.image_buffers.get((*image_handle).clone().handle as usize).unwrap()
|
|
|
|
.clone().buffer.clone()
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Load a texture buffer from an input filename
|
|
|
|
fn get_texture_from_file(&self, image_filename: String) -> Arc<ImmutableImage<Format>> {
|
|
|
|
let project_root =
|
|
|
|
std::env::current_dir()
|
|
|
|
.expect("failed to get root directory");
|
|
|
|
|
|
|
|
let mut compute_path = project_root.clone();
|
|
|
|
compute_path.push(PathBuf::from("resources/images/"));
|
|
|
|
compute_path.push(PathBuf::from(image_filename));
|
|
|
|
|
|
|
|
let img = image::open(compute_path).expect("Couldn't find image");
|
|
|
|
|
|
|
|
let xy = img.dimensions();
|
|
|
|
|
|
|
|
let data_length = xy.0 * xy.1 * 4;
|
|
|
|
let pixel_count = img.raw_pixels().len();
|
|
|
|
|
|
|
|
let mut image_buffer = Vec::new();
|
|
|
|
|
|
|
|
if pixel_count != data_length as usize {
|
|
|
|
println!("Creating apha channel...");
|
|
|
|
for i in img.raw_pixels().iter() {
|
|
|
|
if (image_buffer.len() + 1) % 4 == 0 {
|
|
|
|
image_buffer.push(255);
|
|
|
|
}
|
|
|
|
image_buffer.push(*i);
|
|
|
|
}
|
|
|
|
image_buffer.push(255);
|
|
|
|
} else {
|
|
|
|
image_buffer = img.raw_pixels();
|
|
|
|
}
|
|
|
|
|
|
|
|
let (texture, tex_future) = ImmutableImage::from_iter(
|
|
|
|
image_buffer.iter().cloned(),
|
|
|
|
Dimensions::Dim2d { width: xy.0, height: xy.1 },
|
|
|
|
Format::R8G8B8A8Srgb,
|
|
|
|
self.queue.clone(),
|
|
|
|
).unwrap();
|
|
|
|
|
|
|
|
texture
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Load a texture using it's filename from a file. Returns the handle of the loaded texture
|
|
|
|
pub fn load_texture(&mut self, filename: String) -> Option<Arc<CanvasTextureHandle>> {
|
|
|
|
let texture_buffer = self.get_texture_from_file(filename.clone());
|
|
|
|
|
|
|
|
let handle = Arc::new(CanvasTextureHandle {
|
|
|
|
handle: self.texture_buffers.len() as u32
|
|
|
|
});
|
|
|
|
|
|
|
|
let texture = Arc::new(CanvasTexture {
|
|
|
|
handle: handle.clone(),
|
|
|
|
buffer: self.get_texture_from_file(filename.clone()),
|
|
|
|
name: filename.clone(),
|
|
|
|
size: (0, 0),
|
|
|
|
});
|
|
|
|
|
|
|
|
self.texture_buffers.push(texture);
|
|
|
|
|
|
|
|
Some(handle)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Load and Compile a shader with the filename at resources/shaders
|
|
|
|
/// Takes physical and capabilities as we don't store that in Canvas
|
|
|
|
pub fn load_shader(&mut self,
|
|
|
|
filename: String,
|
|
|
|
physical: PhysicalDevice,
|
|
|
|
capabilities: Capabilities) -> Option<Arc<CompiledGraphicsPipelineHandle>> {
|
|
|
|
|
|
|
|
let handle = Arc::new(CompiledGraphicsPipelineHandle {
|
|
|
|
handle: self.shader_buffers.len() as u32
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
|
|
let shader : Box<dyn CompiledGraphicsPipeline> = Box::new(GenericShader::new(
|
|
|
|
filename.clone(),
|
|
|
|
self.device.clone(),
|
|
|
|
handle.clone(),
|
|
|
|
self.render_pass.clone()
|
|
|
|
));
|
|
|
|
|
|
|
|
self.shader_buffers.push(Arc::new(shader));
|
|
|
|
|
|
|
|
Some(handle)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Using the texture name, iterates through the stored textures and matches by the name
|
|
|
|
pub fn get_texture_handle(&self, texture_name: String)
|
|
|
|
-> Option<Arc<CanvasTextureHandle>> {
|
|
|
|
for i in self.texture_buffers.clone() {
|
|
|
|
if i.name == texture_name {
|
|
|
|
return Some(i.handle.clone());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
None
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Using the shader name, iterates through the stored textures and matches by the name
|
|
|
|
pub fn get_shader_handle(&self, shader_name: String)
|
|
|
|
-> Option<Arc<CompiledGraphicsPipelineHandle>> {
|
|
|
|
for shader in self.shader_buffers.clone() {
|
|
|
|
if shader.get_name() == shader_name {
|
|
|
|
return Some(shader.get_handle().clone());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
None
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Using the texture handle, grab the stored texture and return the buffer
|
|
|
|
pub fn get_texture(&self, texture_handle: Arc<CanvasTextureHandle>)
|
|
|
|
-> Arc<ImmutableImage<Format>> {
|
|
|
|
let handle = texture_handle.handle as usize;
|
|
|
|
|
|
|
|
if let Some(i) = self.texture_buffers.get(handle) {
|
|
|
|
return i.clone().buffer.clone();
|
|
|
|
} else {
|
|
|
|
panic!("{} : Texture not loaded", handle);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Scrape all the values from the CanvasFrame and then allocate the vertex buffers
|
|
|
|
pub fn draw(&mut self, canvas_frame: CanvasFrame) {
|
|
|
|
self.textured_drawables = canvas_frame.textured_drawables;
|
|
|
|
self.colored_drawables = canvas_frame.colored_drawables;
|
|
|
|
self.image_drawables = canvas_frame.image_drawables;
|
|
|
|
|
|
|
|
self.allocate_vertex_buffers();
|
|
|
|
}
|
|
|
|
|
|
|
|
/// draw(canvas_fame) stored all the intermediate information, this function
|
|
|
|
/// allocates the vertex buffers using that information
|
|
|
|
fn allocate_vertex_buffers(&mut self) {
|
|
|
|
self.colored_vertex_buffer.clear();
|
|
|
|
{
|
|
|
|
let g = hprof::enter("Colored Vertex Buffer");
|
|
|
|
self.colored_vertex_buffer.push(
|
|
|
|
ImmutableBuffer::from_iter(
|
|
|
|
self.colored_drawables.iter().cloned(),
|
|
|
|
BufferUsage::vertex_buffer(),
|
|
|
|
self.queue.clone(),
|
|
|
|
).unwrap().0
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
self.textured_vertex_buffer.clear();
|
|
|
|
{
|
|
|
|
let g = hprof::enter("Textured Vertex Buffer");
|
|
|
|
for (k, v) in self.textured_drawables.drain() {
|
|
|
|
let vertex_buffer = v.clone().iter()
|
|
|
|
.fold(Vec::new(), |mut a: Vec<Vertex3D>, b| {
|
|
|
|
a.extend(b);
|
|
|
|
a
|
|
|
|
});
|
|
|
|
|
|
|
|
self.textured_vertex_buffer.insert(
|
|
|
|
k.clone(),
|
|
|
|
ImmutableBuffer::from_iter(
|
|
|
|
vertex_buffer.iter().cloned(),
|
|
|
|
BufferUsage::vertex_buffer(),
|
|
|
|
self.queue.clone(),
|
|
|
|
).unwrap().0,
|
|
|
|
);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
self.image_vertex_buffer.clear();
|
|
|
|
{
|
|
|
|
let g = hprof::enter("Image Vertex Buffer");
|
|
|
|
for (k, v) in self.image_drawables.drain() {
|
|
|
|
let vertex_buffer = v.clone().iter()
|
|
|
|
.fold(Vec::new(), |mut a: Vec<Vertex3D>, b| {
|
|
|
|
a.extend(b);
|
|
|
|
a
|
|
|
|
});
|
|
|
|
|
|
|
|
self.image_vertex_buffer.insert(
|
|
|
|
k.clone(),
|
|
|
|
ImmutableBuffer::from_iter(
|
|
|
|
vertex_buffer.iter().cloned(),
|
|
|
|
BufferUsage::vertex_buffer(),
|
|
|
|
self.queue.clone(),
|
|
|
|
).unwrap().0,
|
|
|
|
);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Builds the descriptor set for solid colors using the input kernel (needs to support solid colors)
|
|
|
|
fn get_solid_color_descriptor_set(&self, kernel: Arc<GenericShader>) -> Box<dyn DescriptorSet + Send + Sync> {
|
|
|
|
let o: Box<dyn DescriptorSet + Send + Sync> = Box::new(
|
|
|
|
PersistentDescriptorSet::start(
|
|
|
|
kernel.clone().get_pipeline().clone(), 0,
|
|
|
|
).build().unwrap());
|
|
|
|
o
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Pushes the draw commands to the command buffer. Requires the framebuffers and
|
|
|
|
/// image number to be passed in as they are taken care of by the vkprocessor
|
|
|
|
pub fn draw_commands(&mut self,
|
|
|
|
mut command_buffer: AutoCommandBufferBuilder,
|
|
|
|
framebuffers: Vec<Arc<dyn FramebufferAbstract + Send + Sync>>,
|
|
|
|
image_num: usize) -> AutoCommandBufferBuilder {
|
|
|
|
|
|
|
|
// Specify the color to clear the framebuffer with i.e. blue
|
|
|
|
let clear_values = vec!(
|
|
|
|
ClearValue::Float([0.0, 0.0, 1.0, 1.0]),
|
|
|
|
ClearValue::DepthStencil((1.0, 0x00)),
|
|
|
|
);
|
|
|
|
|
|
|
|
// self.dynamic_state = DynamicState {
|
|
|
|
// line_width: None,
|
|
|
|
// viewports: self.dynamic_state.viewports.clone(),
|
|
|
|
// scissors: None,
|
|
|
|
// compare_mask: Some(StencilMask{ face: StencilFaceFlags::StencilFaceFrontBit, mask: 0xFF }),
|
|
|
|
// };
|
|
|
|
|
|
|
|
let mut command_buffer = command_buffer.begin_render_pass(
|
|
|
|
framebuffers[image_num].clone(), false, clear_values.clone(),
|
|
|
|
).unwrap();
|
|
|
|
|
|
|
|
// Solid colors
|
|
|
|
let mut shader = self.shader_buffers.get(
|
|
|
|
self.get_shader_handle(String::from("color-passthrough"))
|
|
|
|
.unwrap().clone().handle as usize
|
|
|
|
).unwrap();
|
|
|
|
|
|
|
|
// This looks a little weird as colored_vertex_buffer is a vec of GPU allocated vecs.
|
|
|
|
// But we can pass in multiple vertex buffers
|
|
|
|
|
|
|
|
if !self.colored_vertex_buffer.is_empty() {
|
|
|
|
command_buffer = command_buffer.draw(
|
|
|
|
shader.get_pipeline().clone(),
|
|
|
|
&self.dynamic_state.clone(),
|
|
|
|
self.colored_vertex_buffer.clone(),
|
|
|
|
(), (),
|
|
|
|
).unwrap();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Images
|
|
|
|
let mut shader = self.shader_buffers.get(
|
|
|
|
self.get_shader_handle(String::from("simple_image"))
|
|
|
|
.unwrap().clone().handle as usize
|
|
|
|
).unwrap();
|
|
|
|
|
|
|
|
if !self.image_vertex_buffer.is_empty() {
|
|
|
|
for (image_handle, vertex_buffer) in self.image_vertex_buffer.clone() {
|
|
|
|
let handle = image_handle.clone().handle as usize;
|
|
|
|
let descriptor_set = self.image_buffers.get(handle).clone().unwrap().clone()
|
|
|
|
.get_descriptor_set(shader.get_pipeline().clone());
|
|
|
|
|
|
|
|
command_buffer = command_buffer.draw(
|
|
|
|
shader.get_pipeline().clone(),
|
|
|
|
// Multiple vertex buffers must have their definition in the pipeline!
|
|
|
|
&self.dynamic_state.clone(), vec![vertex_buffer],
|
|
|
|
vec![descriptor_set], (),
|
|
|
|
).unwrap();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Textures
|
|
|
|
let mut shader = self.shader_buffers.get(
|
|
|
|
self.get_shader_handle(String::from("simple_texture"))
|
|
|
|
.unwrap().clone().handle as usize
|
|
|
|
).unwrap();
|
|
|
|
|
|
|
|
if !self.textured_vertex_buffer.is_empty() {
|
|
|
|
for (texture_handle, vertex_buffer) in self.textured_vertex_buffer.clone() {
|
|
|
|
let handle = texture_handle.clone().handle as usize;
|
|
|
|
let descriptor_set = self.texture_buffers.get(handle).clone().unwrap().clone()
|
|
|
|
.get_descriptor_set(shader.get_pipeline(), self.sampler.clone());
|
|
|
|
|
|
|
|
command_buffer = command_buffer.draw(
|
|
|
|
shader.get_pipeline().clone(),
|
|
|
|
// Multiple vertex buffers must have their definition in the pipeline!
|
|
|
|
&self.dynamic_state.clone(), vec![vertex_buffer],
|
|
|
|
vec![descriptor_set], (),
|
|
|
|
).unwrap();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
command_buffer
|
|
|
|
.end_render_pass()
|
|
|
|
.unwrap()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|