had a bit of a time finding the problem with the specialization constants being unimplemented. Adding an impl lets rust elicit the pipeline type so I can store it, thank god

master
mitchellhansen 5 years ago
parent c8a968f4f6
commit 5da2f9f0b5

@ -43,6 +43,8 @@ use vulkano::sync::GpuFuture;
use shaderc::CompileOptions; use shaderc::CompileOptions;
use shade_runner::CompileError; use shade_runner::CompileError;
use crate::workpiece::{WorkpieceLoader, Workpiece}; use crate::workpiece::{WorkpieceLoader, Workpiece};
use winit::{EventsLoop, WindowBuilder};
use vulkano_win::VkSurfaceBuild;
mod slider; mod slider;
mod timer; mod timer;
@ -82,16 +84,37 @@ Let's take a look at how easy it would be to replace SFML...
fn main() { fn main() {
let font = Font::from_file("resources/fonts/sansation.ttf").unwrap(); let instance = {
let extensions = vulkano_win::required_extensions();
Instance::new(None, &extensions, None).unwrap()
};
let mut events_loop = EventsLoop::new();
let mut surface = WindowBuilder::new()
.build_vk_surface(&events_loop, instance.clone()).unwrap();
let mut window = surface.window();
let mut processor = vkprocessor::VkProcessor::new(&instance, &surface);
let instance = Instance::new(None, &InstanceExtensions::none(), None).unwrap();
let mut processor = vkprocessor::VkProcessor::new(&instance);
processor.compile_kernel(String::from("simple-edge.compute")); processor.compile_kernel(String::from("simple-edge.compute"));
processor.load_buffers(String::from("funky-bird.jpg")); processor.load_buffers(String::from("funky-bird.jpg"));
processor.run_kernel(); processor.run_kernel();
processor.read_image(); processor.read_image();
processor.save_image(); processor.save_image();
let font = Font::from_file("resources/fonts/sansation.ttf").unwrap();
let mut window = RenderWindow::new( let mut window = RenderWindow::new(
(900, 900), (900, 900),
"Custom drawable", "Custom drawable",

@ -3,7 +3,7 @@ use vulkano::command_buffer::AutoCommandBufferBuilder;
use vulkano::descriptor::descriptor_set::{PersistentDescriptorSet, StdDescriptorPoolAlloc}; use vulkano::descriptor::descriptor_set::{PersistentDescriptorSet, StdDescriptorPoolAlloc};
use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue}; use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue};
use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice, QueueFamily}; use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice, QueueFamily};
use vulkano::pipeline::{ComputePipeline, GraphicsPipeline}; use vulkano::pipeline::{ComputePipeline, GraphicsPipeline, GraphicsPipelineAbstract};
use vulkano::sync::GpuFuture; use vulkano::sync::GpuFuture;
use vulkano::sync; use vulkano::sync;
use std::time::SystemTime; use std::time::SystemTime;
@ -15,17 +15,56 @@ use image::{DynamicImage, ImageBuffer};
use image::GenericImageView; use image::GenericImageView;
use vulkano::descriptor::pipeline_layout::PipelineLayout; use vulkano::descriptor::pipeline_layout::PipelineLayout;
use image::GenericImage; use image::GenericImage;
use shade_runner::{ComputeLayout, CompileError, FragLayout}; use shade_runner::{ComputeLayout, CompileError, FragLayout, FragInput, FragOutput, VertInput, VertOutput, VertLayout};
use vulkano::descriptor::descriptor_set::PersistentDescriptorSetBuf; use vulkano::descriptor::descriptor_set::PersistentDescriptorSetBuf;
use shaderc::CompileOptions; use shaderc::CompileOptions;
use vulkano::framebuffer::Subpass; use vulkano::framebuffer::{Subpass, RenderPass};
use vulkano::pipeline::shader::GraphicsShaderType; use vulkano::pipeline::shader::{GraphicsShaderType, ShaderModule, GraphicsEntryPoint, SpecializationConstants, SpecializationMapEntry};
use vulkano::swapchain::{Swapchain, PresentMode, SurfaceTransform, Surface};
use vulkano::image::swapchain::SwapchainImage;
use winit::{EventsLoop, WindowBuilder, Window};
use vulkano_win::VkSurfaceBuild;
use vulkano::pipeline::vertex::{SingleBufferDefinition, Vertex};
use vulkano::descriptor::PipelineLayoutAbstract;
use std::alloc::Layout;
#[repr(C)]
struct MySpecConstants {
my_integer_constant: i32,
a_boolean: u32,
floating_point: f32,
}
unsafe impl SpecializationConstants for MySpecConstants {
fn descriptors() -> &'static [SpecializationMapEntry] {
static DESCRIPTORS: [SpecializationMapEntry; 3] = [
SpecializationMapEntry {
constant_id: 0,
offset: 0,
size: 4,
},
SpecializationMapEntry {
constant_id: 1,
offset: 4,
size: 4,
},
SpecializationMapEntry {
constant_id: 2,
offset: 8,
size: 4,
},
];
&DESCRIPTORS
}
}
pub struct VkProcessor<'a> { pub struct VkProcessor<'a> {
pub instance: Arc<Instance>, pub instance: Arc<Instance>,
pub physical: PhysicalDevice<'a>, pub physical: PhysicalDevice<'a>,
pub pipeline: Option<Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>>>, pub pipeline: Option<Arc<GraphicsPipelineAbstract + Sync + Send>>,
pub compute_pipeline: (), pub compute_pipeline: Option<std::sync::Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>>>,
pub device: Arc<Device>, pub device: Arc<Device>,
pub queues: QueuesIter, pub queues: QueuesIter,
pub queue: Arc<Queue>, pub queue: Arc<Queue>,
@ -33,19 +72,33 @@ pub struct VkProcessor<'a> {
pub image_buffer: Vec<u8>, pub image_buffer: Vec<u8>,
pub img_buffers: Vec<Arc<CpuAccessibleBuffer<[u8]>>>, pub img_buffers: Vec<Arc<CpuAccessibleBuffer<[u8]>>>,
pub settings_buffer: Option<Arc<CpuAccessibleBuffer<[u32]>>>, pub settings_buffer: Option<Arc<CpuAccessibleBuffer<[u32]>>>,
pub swapchain: Option<Arc<Swapchain<Window>>>,
pub images: Option<Vec<Arc<SwapchainImage<Window>>>>,
pub xy: (u32, u32), pub xy: (u32, u32),
} }
impl<'a> VkProcessor<'a> { impl<'a> VkProcessor<'a> {
pub fn new(instance : &'a Arc<Instance>) -> VkProcessor<'a> { pub fn new(instance : &'a Arc<Instance>, surface : &'a Arc<Surface<Window>>) -> VkProcessor<'a> {
let physical = PhysicalDevice::enumerate(instance).next().unwrap(); let physical = PhysicalDevice::enumerate(instance).next().unwrap();
let queue_family = physical.queue_families().find(|&q| q.supports_compute()).unwrap();
let queue_family = physical.queue_families().find(|&q| {
// We take the first queue that supports drawing to our window.
q.supports_graphics() &&
surface.is_supported(q).unwrap_or(false) &&
q.supports_compute()
}).unwrap();
let device_ext = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::none() };
let (device, mut queues) = Device::new(physical, let (device, mut queues) = Device::new(physical,
physical.supported_features(), physical.supported_features(),
&DeviceExtensions::none(), &device_ext,
[(queue_family, 0.5)].iter().cloned()).unwrap(); [(queue_family, 0.5)].iter().cloned()).unwrap();
let queue = queues.next().unwrap();
VkProcessor { VkProcessor {
instance: instance.clone(), instance: instance.clone(),
physical: physical.clone(), physical: physical.clone(),
@ -58,6 +111,8 @@ impl<'a> VkProcessor<'a> {
image_buffer: Vec::new(), image_buffer: Vec::new(),
img_buffers: Vec::new(), img_buffers: Vec::new(),
settings_buffer: Option::None, settings_buffer: Option::None,
swapchain: Option::None,
images: Option::None,
xy: (0,0), xy: (0,0),
} }
@ -104,7 +159,52 @@ impl<'a> VkProcessor<'a> {
self.compute_pipeline = Some(compute_pipeline); self.compute_pipeline = Some(compute_pipeline);
} }
pub fn compile_shaders(&mut self, filename: String) { pub fn compile_shaders(&mut self, filename: String, surface : &'a Arc<Surface<Window>>) {
// Before we can draw on the surface, we have to create what is called a swapchain. Creating
// a swapchain allocates the color buffers that will contain the image that will ultimately
// be visible on the screen. These images are returned alongside with the swapchain.
let (mut swapchain, images) = {
// Querying the capabilities of the surface. When we create the swapchain we can only
// pass values that are allowed by the capabilities.
let capabilities = surface.capabilities(self.physical).unwrap();
let usage = capabilities.supported_usage_flags;
// The alpha mode indicates how the alpha value of the final image will behave. For example
// you can choose whether the window will be opaque or transparent.
let alpha = capabilities.supported_composite_alpha.iter().next().unwrap();
// Choosing the internal format that the images will have.
let format = capabilities.supported_formats[0].0;
// The dimensions of the window, only used to initially setup the swapchain.
// NOTE:
// On some drivers the swapchain dimensions are specified by `caps.current_extent` and the
// swapchain size must use these dimensions.
// These dimensions are always the same as the window dimensions
//
// However other drivers dont specify a value i.e. `caps.current_extent` is `None`
// These drivers will allow anything but the only sensible value is the window dimensions.
//
// Because for both of these cases, the swapchain needs to be the window dimensions, we just use that.
let initial_dimensions = if let Some(dimensions) = surface.window().get_inner_size() {
// convert to physical pixels
let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
// The window no longer exists so exit the application.
return;
};
// Please take a look at the docs for the meaning of the parameters we didn't mention.
Swapchain::new(self.device.clone(), surface.clone(), capabilities.min_image_count, format,
initial_dimensions, 1, usage, &self.queue, SurfaceTransform::Identity, alpha,
PresentMode::Fifo, true, None).unwrap()
};
self.swapchain = Some(swapchain);
self.images = Some(images);
let project_root = let project_root =
std::env::current_dir() std::env::current_dir()
@ -113,15 +213,15 @@ impl<'a> VkProcessor<'a> {
let mut shader_path = project_root.clone(); let mut shader_path = project_root.clone();
shader_path.push(PathBuf::from("resources/shaders/")); shader_path.push(PathBuf::from("resources/shaders/"));
let mut vertex_shader_path = project_root.clone() let mut vertex_shader_path = project_root.clone();
.push(PathBuf::from("resources/shaders/")); vertex_shader_path.push(PathBuf::from("resources/shaders/"));
vertex_shader_path.push(PathBuf::from(filename.clone())); vertex_shader_path.push(PathBuf::from(filename.clone()));
vertex_shader_path.push(PathBuf::from(".vertex")); vertex_shader_path.push(PathBuf::from(".vertex"));
let mut fragment_shader_path = project_root.clone() let mut fragment_shader_path = project_root.clone();
.push(PathBuf::from("resources/shaders/")); fragment_shader_path.push(PathBuf::from("resources/shaders/"));
vertex_shader_path.push(PathBuf::from(filename.clone())); fragment_shader_path.push(PathBuf::from(filename.clone()));
vertex_shader_path.push(PathBuf::from(".fragment")); fragment_shader_path.push(PathBuf::from(".fragment"));
let mut options = CompileOptions::new().ok_or(CompileError::CreateCompiler).unwrap(); let mut options = CompileOptions::new().ok_or(CompileError::CreateCompiler).unwrap();
options.add_macro_definition("SETTING_POS_X", Some("0")); options.add_macro_definition("SETTING_POS_X", Some("0"));
@ -137,68 +237,127 @@ impl<'a> VkProcessor<'a> {
sr::parse(&shader) sr::parse(&shader)
.expect("failed to parse"); .expect("failed to parse");
let x = unsafe { let x1 : Arc<ShaderModule> = unsafe {
vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.fragment) vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.fragment)
}.unwrap(); }.unwrap();
let x2 = unsafe {
vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.vertex)
}.unwrap();
let frag_entry_point = unsafe { let frag_entry_point : GraphicsEntryPoint<MySpecConstants, FragInput, FragOutput, FragLayout> = unsafe {
&x.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"), x1.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
vulkano_entry.frag_input, vulkano_entry.frag_input,
vulkano_entry.frag_output, vulkano_entry.frag_output,
vulkano_entry.frag_layout, GraphicsShaderType::Fragment) vulkano_entry.frag_layout,
GraphicsShaderType::Fragment)
}; };
let vert_entry_point = unsafe { let vert_entry_point: GraphicsEntryPoint<MySpecConstants, VertInput, VertOutput, VertLayout> = unsafe {
&x.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"), x2.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
vulkano_entry.frag_input, vulkano_entry.vert_input,
vulkano_entry.frag_output, vulkano_entry.vert_output,
vulkano_entry.frag_layout, GraphicsShaderType::Fragment) vulkano_entry.vert_layout,
GraphicsShaderType::Vertex)
}; };
// The next step is to create a *render pass*, which is an object that describes where the
// output of the graphics pipeline will go. It describes the layout of the images
// where the colors, depth and/or stencil information will be written.
let render_pass = Arc::new(vulkano::single_pass_renderpass!(
self.device.clone(),
attachments: {
// `color` is a custom name we give to the first and only attachment.
color: {
// `load: Clear` means that we ask the GPU to clear the content of this
// attachment at the start of the drawing.
load: Clear,
// `store: Store` means that we ask the GPU to store the output of the draw
// in the actual image. We could also ask it to discard the result.
store: Store,
// `format: <ty>` indicates the type of the format of the image. This has to
// be one of the types of the `vulkano::format` module (or alternatively one
// of your structs that implements the `FormatDesc` trait). Here we use the
// same format as the swapchain.
format: self.swapchain.clone().unwrap().clone().format(),
// TODO:
samples: 1,
}
},
pass: {
// We use the attachment named `color` as the one and only color attachment.
color: [color],
// No depth-stencil attachment is indicated with empty brackets.
depth_stencil: {}
}
).unwrap());
// Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
// program, but much more specific. // Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
self.pipeline = Option::Some(Arc::new(GraphicsPipeline::start() // program, but much more specific.
let pipeline = GraphicsPipeline::start()
// We need to indicate the layout of the vertices. // We need to indicate the layout of the vertices.
// The type `SingleBufferDefinition` actually contains a template parameter corresponding // The type `SingleBufferDefinition` actually contains a template parameter corresponding
// to the type of each vertex. But in this code it is automatically inferred. // to the type of each vertex. But in this code it is automatically inferred.
.vertex_input_single_buffer() // .vertex_input_single_buffer()
// A Vulkan shader can in theory contain multiple entry points, so we have to specify // A Vulkan shader can in theory contain multiple entry points, so we have to specify
// which one. The `main` word of `main_entry_point` actually corresponds to the name of // which one. The `main` word of `main_entry_point` actually corresponds to the name of
// the entry point. // the entry point.
.vertex_shader(vert_entry_point, ()) .vertex_shader(vert_entry_point, MySpecConstants {
my_integer_constant: 0,
a_boolean: 0,
floating_point: 0.0
})
// The content of the vertex buffer describes a list of triangles. // The content of the vertex buffer describes a list of triangles.
.triangle_list() .triangle_list()
// Use a resizable viewport set to draw over the entire window // Use a resizable viewport set to draw over the entire window
.viewports_dynamic_scissors_irrelevant(1) .viewports_dynamic_scissors_irrelevant(1)
// See `vertex_shader`. // See `vertex_shader`.
.fragment_shader(frag_entry_point, ()) .fragment_shader(frag_entry_point, MySpecConstants {
my_integer_constant: 0,
a_boolean: 0,
floating_point: 0.0
})
// We have to indicate which subpass of which render pass this pipeline is going to be used // We have to indicate which subpass of which render pass this pipeline is going to be used
// in. The pipeline will only be usable from this particular subpass. // in. The pipeline will only be usable from this particular subpass.
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap()) .render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
// Now that our builder is filled, we call `build()` to obtain an actual pipeline. // Now that our builder is filled, we call `build()` to obtain an actual pipeline.
.build(device.clone()) .build(self.device.clone())
.unwrap())); .unwrap();
self.pipeline = Option::Some(Arc::new(pipeline));
}
let x = unsafe { pub fn create_renderpass(&mut self) {
vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.fragment)
}.unwrap();
let pipeline = Arc::new({ let render_pass = Arc::new(vulkano::single_pass_renderpass!(
unsafe { self.device.clone(),
ComputePipeline::new(self.device.clone(), &x.compute_entry_point( attachments: {
CStr::from_bytes_with_nul_unchecked(b"main\0"), // `color` is a custom name we give to the first and only attachment.
vulkano_entry.compute_layout), &(), color: {
).unwrap() // `load: Clear` means that we ask the GPU to clear the content of this
// attachment at the start of the drawing.
load: Clear,
// `store: Store` means that we ask the GPU to store the output of the draw
// in the actual image. We could also ask it to discard the result.
store: Store,
// `format: <ty>` indicates the type of the format of the image. This has to
// be one of the types of the `vulkano::format` module (or alternatively one
// of your structs that implements the `FormatDesc` trait). Here we use the
// same format as the swapchain.
format: self.swapchain.clone().unwrap().clone().format(),
// TODO:
samples: 1,
}
},
pass: {
// We use the attachment named `color` as the one and only color attachment.
color: [color],
// No depth-stencil attachment is indicated with empty brackets.
depth_stencil: {}
} }
}); ).unwrap());
self.pipeline = Some(pipeline);
} }
pub fn load_buffers(&mut self, image_filename: String) pub fn load_buffers(&mut self, image_filename: String)
@ -268,7 +427,7 @@ impl<'a> VkProcessor<'a> {
// Create the data descriptor set for our previously created shader pipeline // Create the data descriptor set for our previously created shader pipeline
let mut set = let mut set =
PersistentDescriptorSet::start(self.pipeline.clone().unwrap().clone(), 0) PersistentDescriptorSet::start(self.compute_pipeline.clone().unwrap().clone(), 0)
.add_buffer(write_buffer.clone()).unwrap() .add_buffer(write_buffer.clone()).unwrap()
.add_buffer(read_buffer.clone()).unwrap() .add_buffer(read_buffer.clone()).unwrap()
.add_buffer(settings_buffer.clone()).unwrap(); .add_buffer(settings_buffer.clone()).unwrap();
@ -280,37 +439,6 @@ impl<'a> VkProcessor<'a> {
self.settings_buffer = Some(settings_buffer); self.settings_buffer = Some(settings_buffer);
} }
pub fn create_renderpass(&mut self) {
let render_pass = Arc::new(vulkano::single_pass_renderpass!(
self.device.clone(),
attachments: {
// `color` is a custom name we give to the first and only attachment.
color: {
// `load: Clear` means that we ask the GPU to clear the content of this
// attachment at the start of the drawing.
load: Clear,
// `store: Store` means that we ask the GPU to store the output of the draw
// in the actual image. We could also ask it to discard the result.
store: Store,
// `format: <ty>` indicates the type of the format of the image. This has to
// be one of the types of the `vulkano::format` module (or alternatively one
// of your structs that implements the `FormatDesc` trait). Here we use the
// same format as the swapchain.
format: swapchain.format(),
// TODO:
samples: 1,
}
},
pass: {
// We use the attachment named `color` as the one and only color attachment.
color: [color],
// No depth-stencil attachment is indicated with empty brackets.
depth_stencil: {}
}
).unwrap());
}
pub fn run_kernel(&mut self) { pub fn run_kernel(&mut self) {
println!("Running Kernel..."); println!("Running Kernel...");
@ -319,7 +447,7 @@ impl<'a> VkProcessor<'a> {
let command_buffer = let command_buffer =
AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(),self.queue.family()).unwrap() AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(),self.queue.family()).unwrap()
.dispatch([self.xy.0, self.xy.1, 1], .dispatch([self.xy.0, self.xy.1, 1],
self.pipeline.clone().unwrap().clone(), self.compute_pipeline.clone().unwrap().clone(),
self.set.clone().unwrap().clone(), ()).unwrap() self.set.clone().unwrap().clone(), ()).unwrap()
.build().unwrap(); .build().unwrap();

Loading…
Cancel
Save