|
|
@ -105,7 +105,7 @@ pub struct VkProcessor<'a> {
|
|
|
|
pub images: Option<Vec<Arc<SwapchainImage<Window>>>>,
|
|
|
|
pub images: Option<Vec<Arc<SwapchainImage<Window>>>>,
|
|
|
|
pub xy: (u32, u32),
|
|
|
|
pub xy: (u32, u32),
|
|
|
|
pub render_pass: Option<Arc<RenderPassAbstract + Send + Sync>>,
|
|
|
|
pub render_pass: Option<Arc<RenderPassAbstract + Send + Sync>>,
|
|
|
|
pub vertex_buffer: Option<Arc<CpuAccessibleBuffer<[tVertex]>>>,
|
|
|
|
pub vertex_buffer: Option<Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync + 'static)>>,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
impl<'a> VkProcessor<'a> {
|
|
|
|
impl<'a> VkProcessor<'a> {
|
|
|
@ -381,7 +381,7 @@ impl<'a> VkProcessor<'a> {
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Since we need to draw to multiple images, we are going to create a different framebuffer for
|
|
|
|
// Since we need to draw to multiple images, we are going to create a different framebuffer for
|
|
|
|
// each image.
|
|
|
|
// each image.
|
|
|
|
let mut framebuffers = window_size_dependent_setup(&self.images.unwrap(), self.render_pass.clone().unwrap().clone(), &mut dynamic_state);
|
|
|
|
let mut framebuffers = window_size_dependent_setup(&self.images.clone().unwrap().clone(), self.render_pass.clone().unwrap().clone(), &mut dynamic_state);
|
|
|
|
|
|
|
|
|
|
|
|
// Initialization is finally finished!
|
|
|
|
// Initialization is finally finished!
|
|
|
|
|
|
|
|
|
|
|
@ -422,7 +422,7 @@ impl<'a> VkProcessor<'a> {
|
|
|
|
return;
|
|
|
|
return;
|
|
|
|
};
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
let (new_swapchain, new_images) = match self.swapchain.unwrap().recreate_with_dimension(dimensions) {
|
|
|
|
let (new_swapchain, new_images) = match self.swapchain.clone().unwrap().recreate_with_dimension(dimensions) {
|
|
|
|
Ok(r) => r,
|
|
|
|
Ok(r) => r,
|
|
|
|
// This error tends to happen when the user is manually resizing the window.
|
|
|
|
// This error tends to happen when the user is manually resizing the window.
|
|
|
|
// Simply restarting the loop is the easiest way to fix this issue.
|
|
|
|
// Simply restarting the loop is the easiest way to fix this issue.
|
|
|
@ -433,7 +433,7 @@ impl<'a> VkProcessor<'a> {
|
|
|
|
self.swapchain = Some(new_swapchain);
|
|
|
|
self.swapchain = Some(new_swapchain);
|
|
|
|
// Because framebuffers contains an Arc on the old swapchain, we need to
|
|
|
|
// Because framebuffers contains an Arc on the old swapchain, we need to
|
|
|
|
// recreate framebuffers as well.
|
|
|
|
// recreate framebuffers as well.
|
|
|
|
framebuffers = window_size_dependent_setup(&new_images, self.render_pass.unwrap().clone(), &mut dynamic_state);
|
|
|
|
framebuffers = window_size_dependent_setup(&new_images, self.render_pass.clone().unwrap().clone(), &mut dynamic_state);
|
|
|
|
|
|
|
|
|
|
|
|
recreate_swapchain = false;
|
|
|
|
recreate_swapchain = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
@ -445,7 +445,7 @@ impl<'a> VkProcessor<'a> {
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// This function can block if no image is available. The parameter is an optional timeout
|
|
|
|
// This function can block if no image is available. The parameter is an optional timeout
|
|
|
|
// after which the function call will return an error.
|
|
|
|
// after which the function call will return an error.
|
|
|
|
let (image_num, acquire_future) = match vulkano::swapchain::acquire_next_image(self.swapchain.unwrap().clone(), None) {
|
|
|
|
let (image_num, acquire_future) = match vulkano::swapchain::acquire_next_image(self.swapchain.clone().unwrap().clone(), None) {
|
|
|
|
Ok(r) => r,
|
|
|
|
Ok(r) => r,
|
|
|
|
Err(AcquireError::OutOfDate) => {
|
|
|
|
Err(AcquireError::OutOfDate) => {
|
|
|
|
recreate_swapchain = true;
|
|
|
|
recreate_swapchain = true;
|
|
|
@ -468,6 +468,9 @@ impl<'a> VkProcessor<'a> {
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Note that we have to pass a queue family when we create the command buffer. The command
|
|
|
|
// Note that we have to pass a queue family when we create the command buffer. The command
|
|
|
|
// buffer will only be executable on that given queue family.
|
|
|
|
// buffer will only be executable on that given queue family.
|
|
|
|
|
|
|
|
let mut v = Vec::new();
|
|
|
|
|
|
|
|
v.push(self.vertex_buffer.clone().unwrap().clone());
|
|
|
|
|
|
|
|
|
|
|
|
let command_buffer =
|
|
|
|
let command_buffer =
|
|
|
|
AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(), self.queue.family())
|
|
|
|
AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(), self.queue.family())
|
|
|
|
.unwrap()
|
|
|
|
.unwrap()
|
|
|
@ -490,7 +493,7 @@ impl<'a> VkProcessor<'a> {
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// The last two parameters contain the list of resources to pass to the shaders.
|
|
|
|
// The last two parameters contain the list of resources to pass to the shaders.
|
|
|
|
// Since we used an `EmptyPipeline` object, the objects have to be `()`.
|
|
|
|
// Since we used an `EmptyPipeline` object, the objects have to be `()`.
|
|
|
|
.draw(self.pipeline.clone(), &dynamic_state, self.vertex_buffer.clone().unwrap().clone(), (), ())
|
|
|
|
.draw(self.pipeline.clone().unwrap().clone(), &dynamic_state, v, (), ())
|
|
|
|
.unwrap()
|
|
|
|
.unwrap()
|
|
|
|
|
|
|
|
|
|
|
|
// We leave the render pass by calling `draw_end`. Note that if we had multiple
|
|
|
|
// We leave the render pass by calling `draw_end`. Note that if we had multiple
|
|
|
@ -511,7 +514,7 @@ impl<'a> VkProcessor<'a> {
|
|
|
|
// This function does not actually present the image immediately. Instead it submits a
|
|
|
|
// This function does not actually present the image immediately. Instead it submits a
|
|
|
|
// present command at the end of the queue. This means that it will only be presented once
|
|
|
|
// present command at the end of the queue. This means that it will only be presented once
|
|
|
|
// the GPU has finished executing the command buffer that draws the triangle.
|
|
|
|
// the GPU has finished executing the command buffer that draws the triangle.
|
|
|
|
.then_swapchain_present(self.queue.clone(), self.swapchain.unwrap().clone(), image_num)
|
|
|
|
.then_swapchain_present(self.queue.clone(), self.swapchain.clone().unwrap().clone(), image_num)
|
|
|
|
.then_signal_fence_and_flush();
|
|
|
|
.then_signal_fence_and_flush();
|
|
|
|
|
|
|
|
|
|
|
|
match future {
|
|
|
|
match future {
|
|
|
@ -630,8 +633,6 @@ impl<'a> VkProcessor<'a> {
|
|
|
|
|
|
|
|
|
|
|
|
// We now create a buffer that will store the shape of our triangle.
|
|
|
|
// We now create a buffer that will store the shape of our triangle.
|
|
|
|
let vertex_buffer = {
|
|
|
|
let vertex_buffer = {
|
|
|
|
#[derive(Default, Debug, Clone)]
|
|
|
|
|
|
|
|
struct Vertex { position: [f32; 2] }
|
|
|
|
|
|
|
|
vulkano::impl_vertex!(tVertex, position);
|
|
|
|
vulkano::impl_vertex!(tVertex, position);
|
|
|
|
|
|
|
|
|
|
|
|
CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), [
|
|
|
|
CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), [
|
|
|
|