starting to hook up the compute frame translation.

master
mitchellhansen 5 years ago
parent a3607ebc7d
commit 885e19fb64

@ -51,31 +51,22 @@ it appears that renderpass is tied to the individual shader
pub trait Vertex { pub trait Vertex {
fn position(&self) -> (f32, f32) { fn position(&self) -> (f32, f32) {
(0.0,0.0) (0.0, 0.0)
} }
fn color(&self) -> Option<(f32, f32, f32, f32)> { fn color(&self) -> Option<(f32, f32, f32, f32)> {
Some((0.,0.,0.,0.)) Some((0., 0., 0., 0.))
}
fn textured(&self) -> bool {
false
} }
} }
impl Vertex for ColoredVertex2D { impl Vertex for ColoredVertex2D {
fn position(&self) -> (f32, f32) { fn position(&self) -> (f32, f32) {
(0.0,0.0) (0.0, 0.0)
} }
fn color(&self) -> Option<(f32, f32, f32, f32)> { fn color(&self) -> Option<(f32, f32, f32, f32)> {
Some((0.,0.,0.,0.)) Some((0., 0., 0., 0.))
}
fn textured(&self) -> bool {
false
} }
} }
@ -86,17 +77,18 @@ pub trait Drawable {
fn get_image_handle(&self) -> Option<Arc<u32>>; fn get_image_handle(&self) -> Option<Arc<u32>>;
} }
// Need three types of shaders. Solid, Textured, Compute // Need three types of shaders. Solid, Textured, Image
#[derive(PartialEq, Eq, Hash, Clone)] #[derive(PartialEq, Eq, Hash, Clone)]
pub enum ShaderType { pub enum ShaderType {
SOLID = 0, SOLID = 0,
TEXTURED = 1, TEXTURED = 1,
COMPUTE = 2 IMAGE = 2,
} }
pub struct CanvasFrame { pub struct CanvasFrame {
colored_drawables : Vec<ColoredVertex2D>, colored_drawables: Vec<ColoredVertex2D>,
textured_drawables: HashMap<Arc<u32>, Vec<Vertex2D>>, textured_drawables: HashMap<Arc<u32>, Vec<Vec<Vertex2D>>>,
image_drawables: HashMap<Arc<u32>, Vec<Vec<Vertex2D>>>,
} }
impl CanvasFrame { impl CanvasFrame {
@ -104,25 +96,39 @@ impl CanvasFrame {
pub fn new() -> CanvasFrame { pub fn new() -> CanvasFrame {
CanvasFrame { CanvasFrame {
colored_drawables: vec![], colored_drawables: vec![],
textured_drawables: Default::default() textured_drawables: Default::default(),
image_drawables: Default::default()
} }
} }
// After done using this, need to call allocated vertex buffers // Accumulates the drawables vertices and colors
pub fn draw(&mut self, drawable: &dyn Drawable) { pub fn draw(&mut self, drawable: &dyn Drawable) {
match drawable.get_texture_handle() { match drawable.get_texture_handle() {
Some(id) => { Some(handle) => {
self.textured_drawables self.textured_drawables
.entry(id.clone()) .entry(handle.clone())
.or_insert(Vec::new()) .or_insert(Vec::new())
.extend(drawable.get_vertices().iter().map(|n| .push(drawable.get_vertices().iter().map(|n|
Vertex2D { Vertex2D {
position: [n.0, n.1], position: [n.0, n.1],
} }
)); ).collect::<Vec<Vertex2D>>());
}
None => {
}, match drawable.get_image_handle() {
Some(handle) => {
self.image_drawables
.entry(handle.clone())
.or_insert(Vec::new())
.push(drawable.get_vertices().iter().map(|n|
Vertex2D {
position: [n.0, n.1],
}
).collect());
}
None => { None => {
let colors = drawable.get_color(); let colors = drawable.get_color();
@ -130,43 +136,77 @@ impl CanvasFrame {
drawable.get_vertices().iter().map(|n| drawable.get_vertices().iter().map(|n|
ColoredVertex2D { ColoredVertex2D {
position: [n.0, n.1], position: [n.0, n.1],
color: [colors.0, colors.1, colors.2, colors.3] color: [colors.0, colors.1, colors.2, colors.3],
} }
) )
); );
} }
} }
} }
}
}
} }
#[derive(Clone)] #[derive(Clone)]
pub struct Canvas { pub struct Canvas {
colored_drawables : Vec<ColoredVertex2D>,
colored_vertex_buffer: Vec<Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync)>>,
textured_drawables: HashMap<Arc<u32>, Vec<Vertex2D>>,
textured_vertex_buffer: HashMap<Arc<u32>, Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync)>>,
shader_kernels: HashMap<ShaderType, ShaderKernels>, shader_kernels: HashMap<ShaderType, ShaderKernels>,
texture_store: HashMap<String, Arc<ImmutableImage<Format>>>, texture_store: HashMap<String, Arc<ImmutableImage<Format>>>,
dynamic_state: DynamicState, dynamic_state: DynamicState,
sampler: Arc<Sampler>,
// hold the image, texture, and shader buffers the same was as we do CompuState
image_buffers: Vec<std::sync::Arc<vulkano::image::attachment::AttachmentImage>>, image_buffers: Vec<std::sync::Arc<vulkano::image::attachment::AttachmentImage>>,
image_buffer_handles: Vec<Arc<u32>>, image_buffer_handles: Vec<Arc<u32>>,
texture_buffers: Vec<Arc<ImmutableImage<Format>>>,
texture_buffer_handles: Vec<Arc<u32>>,
shader_buffers: HashMap<ShaderType, ShaderKernels>,
shader_buffer_handles: Vec<Arc<u32>>,
// Hold onto the vertices we get from the Compu and Canvas Frames
// When the run comes around, push the vertices to the GPU
colored_drawables: Vec<ColoredVertex2D>,
colored_vertex_buffer: Vec<Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync)>>,
textured_drawables: HashMap<Arc<u32>, Vec<Vec<Vertex2D>>>,
textured_vertex_buffer: HashMap<Arc<u32>, Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync)>>,
image_drawables: HashMap<Arc<u32>, Vec<Vec<Vertex2D>>>,
image_vertex_buffer: HashMap<Arc<u32>, Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync)>>,
// Looks like we gotta hold onto the queue for managing textures // Looks like we gotta hold onto the queue for managing textures
queue: Arc<Queue>, queue: Arc<Queue>,
sampler: Arc<Sampler>,
device: Arc<Device>, device: Arc<Device>,
} }
impl Canvas { impl Canvas {
// This method is called once during initialization, then again whenever the window is resized
pub fn window_size_dependent_setup(&mut self, images: &[Arc<SwapchainImage<Window>>])
-> Vec<Arc<dyn FramebufferAbstract + Send + Sync>> {
let dimensions = images[0].dimensions();
self.dynamic_state.viewports =
Some(vec![Viewport {
origin: [0.0, 0.0],
dimensions: [dimensions.width() as f32, dimensions.height() as f32],
depth_range: 0.0..1.0,
}]);
images.iter().map(|image| {
Arc::new(
Framebuffer::start(self.shader_kernels.get(&ShaderType::SOLID).unwrap().render_pass.clone())
.add(image.clone()).unwrap()
.build().unwrap()
) as Arc<dyn FramebufferAbstract + Send + Sync>
}).collect::<Vec<_>>()
}
// needs to take in the texture list // needs to take in the texture list
pub fn new(queue: Arc<Queue>, pub fn new(queue: Arc<Queue>,
device: Arc<Device>, device: Arc<Device>,
@ -176,33 +216,36 @@ impl Canvas {
let solid_color_kernel = String::from("color-passthrough"); let solid_color_kernel = String::from("color-passthrough");
let texture_kernel = String::from("simple_texture"); let texture_kernel = String::from("simple_texture");
let shader_kernels = HashMap::from_iter(vec![ let shader_kernels : HashMap<ShaderType, ShaderKernels> = HashMap::from_iter(vec![
(ShaderType::SOLID, ShaderKernels::new(solid_color_kernel, capabilities.clone(), queue.clone(), physical.clone(), device.clone())), (ShaderType::SOLID, ShaderKernels::new(solid_color_kernel, capabilities.clone(), queue.clone(), physical.clone(), device.clone())),
//(ShaderType::TEXTURED, ShaderKernels::new(texture_kernel, capabilities.clone(), queue.clone(), physical.clone(), device.clone())) (ShaderType::TEXTURED, ShaderKernels::new(texture_kernel, capabilities.clone(), queue.clone(), physical.clone(), device.clone()))
]); ]);
Canvas {
colored_drawables: vec![],
colored_vertex_buffer: vec![],
textured_drawables: Default::default(), Canvas {
textured_vertex_buffer: Default::default(), shader_kernels: Default::default(),
shader_kernels: shader_kernels,
texture_store: Default::default(), texture_store: Default::default(),
dynamic_state: DynamicState { line_width: None, viewports: None, scissors: None }, dynamic_state: DynamicState { line_width: None, viewports: None, scissors: None },
image_buffers: Vec::new(),
image_buffer_handles: Vec::new(),
device: device.clone(),
queue: queue.clone(),
sampler: Sampler::new(device.clone(), Filter::Linear, Filter::Linear, sampler: Sampler::new(device.clone(), Filter::Linear, Filter::Linear,
MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat,
SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap(), SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap(),
image_buffers: vec![],
image_buffer_handles: vec![],
texture_buffers: vec![],
texture_buffer_handles: vec![],
shader_buffers: Default::default(),
shader_buffer_handles: vec![],
colored_drawables: vec![],
colored_vertex_buffer: vec![],
textured_drawables: Default::default(),
textured_vertex_buffer: Default::default(),
image_drawables: Default::default(),
image_vertex_buffer: Default::default(),
queue: queue.clone(),
device: device.clone(),
} }
} }
@ -220,7 +263,6 @@ impl Canvas {
// TODO Handle file not found gracefully // TODO Handle file not found gracefully
fn get_texture_from_file(&self, image_filename: String) -> Arc<ImmutableImage<Format>> { fn get_texture_from_file(&self, image_filename: String) -> Arc<ImmutableImage<Format>> {
let project_root = let project_root =
std::env::current_dir() std::env::current_dir()
.expect("failed to get root directory"); .expect("failed to get root directory");
@ -255,14 +297,13 @@ impl Canvas {
image_buffer.iter().cloned(), image_buffer.iter().cloned(),
Dimensions::Dim2d { width: xy.0, height: xy.1 }, Dimensions::Dim2d { width: xy.0, height: xy.1 },
Format::R8G8B8A8Srgb, Format::R8G8B8A8Srgb,
self.queue.clone() self.queue.clone(),
).unwrap(); ).unwrap();
texture texture
} }
pub fn load_texture_from_filename(&mut self, filename: String) -> Arc<ImmutableImage<Format>> { pub fn load_texture_from_filename(&mut self, filename: String) -> Arc<ImmutableImage<Format>> {
if self.texture_store.contains_key(&filename.clone()) { if self.texture_store.contains_key(&filename.clone()) {
println!("{} Already exists, not going to replace it.", filename.clone()); println!("{} Already exists, not going to replace it.", filename.clone());
self.texture_store.get(&filename.clone()).unwrap().clone() self.texture_store.get(&filename.clone()).unwrap().clone()
@ -273,15 +314,25 @@ impl Canvas {
} }
} }
pub fn load_texture(&mut self, filename: String) -> Option<Arc<u32>> {
let texture_buffer = self.get_texture_from_file(filename.clone());
self.texture_buffers.push(texture_buffer.clone());
let id = Arc::new(self.texture_buffers.len() as u32);
self.texture_buffer_handles.push(id.clone());
Some(id)
}
// After done using this, need to call allocated vertex buffers // After done using this, need to call allocated vertex buffers
pub fn draw(&mut self, canvas_frame: CanvasFrame) { pub fn draw(&mut self, canvas_frame: CanvasFrame) {
self.textured_drawables = canvas_frame.textured_drawables; self.textured_drawables = canvas_frame.textured_drawables;
self.colored_drawables = canvas_frame.colored_drawables; self.colored_drawables = canvas_frame.colored_drawables;
} self.image_drawables = canvas_frame.image_drawables;
self.allocate_vertex_buffers(self.device.clone());
}
fn get_texture(&self, texture_id: String) -> Arc<ImmutableImage<Format>> { fn get_texture(&self, texture_id: String) -> Arc<ImmutableImage<Format>> {
if let Some(i) = self.texture_store.get(&texture_id) { if let Some(i) = self.texture_store.get(&texture_id) {
return i.clone(); return i.clone();
} else { } else {
@ -290,9 +341,9 @@ impl Canvas {
} }
pub fn allocate_vertex_buffers(&mut self, device: Arc<Device>) { pub fn allocate_vertex_buffers(&mut self, device: Arc<Device>) {
self.colored_vertex_buffer.clear(); self.colored_vertex_buffer.clear();
self.textured_vertex_buffer.clear(); self.textured_vertex_buffer.clear();
self.image_vertex_buffer.clear();
//TODO should probably use cpu accessible buffer instead of recreating immutes each frame //TODO should probably use cpu accessible buffer instead of recreating immutes each frame
@ -317,28 +368,26 @@ impl Canvas {
v.iter().cloned(), v.iter().cloned(),
BufferUsage::vertex_buffer(), BufferUsage::vertex_buffer(),
self.queue.clone(), self.queue.clone(),
).unwrap().0 ).unwrap().0,
); );
} }
} }
fn get_solid_color_descriptor_set(&self) -> Box<dyn DescriptorSet + Send + Sync> { fn get_solid_color_descriptor_set(&self) -> Box<dyn DescriptorSet + Send + Sync> {
println!("{}", self.shader_kernels.get(&ShaderType::SOLID).unwrap().clone().get_pipeline().clone().num_sets()); println!("{}", self.shader_kernels.get(&ShaderType::SOLID).unwrap().clone().get_pipeline().clone().num_sets());
let o: Box<dyn DescriptorSet + Send + Sync> = Box::new( let o: Box<dyn DescriptorSet + Send + Sync> = Box::new(
PersistentDescriptorSet::start( PersistentDescriptorSet::start(
self.shader_kernels.get(&ShaderType::SOLID).unwrap().clone().get_pipeline().clone(), 0 self.shader_kernels.get(&ShaderType::SOLID).unwrap().clone().get_pipeline().clone(), 0,
).build().unwrap()); ).build().unwrap());
o o
} }
fn get_textured_descriptor_set(&self, texture_id: String) fn get_textured_descriptor_set(&self, texture_id: String)
-> Box<dyn DescriptorSet + Send + Sync> { -> Box<dyn DescriptorSet + Send + Sync> {
let o: Box<dyn DescriptorSet + Send + Sync> = Box::new( let o: Box<dyn DescriptorSet + Send + Sync> = Box::new(
PersistentDescriptorSet::start( PersistentDescriptorSet::start(
self.shader_kernels.get(&ShaderType::TEXTURED).unwrap().clone().get_pipeline().clone(), 0 self.shader_kernels.get(&ShaderType::TEXTURED).unwrap().clone().get_pipeline().clone(), 0,
) )
.add_sampled_image(self.get_texture(texture_id), self.sampler.clone()).unwrap() .add_sampled_image(self.get_texture(texture_id), self.sampler.clone()).unwrap()
.build().unwrap()); .build().unwrap());
@ -351,24 +400,19 @@ impl Canvas {
fn get_compute_swap_descriptor_set(&mut self, fn get_compute_swap_descriptor_set(&mut self,
device: Arc<Device>, device: Arc<Device>,
compute_image: &ComputeImage) -> Box<dyn DescriptorSet + Send + Sync> { compute_image: &ComputeImage) -> Box<dyn DescriptorSet + Send + Sync> {
let sampler = Sampler::new(device.clone(), Filter::Linear, Filter::Linear, let sampler = Sampler::new(device.clone(), Filter::Linear, Filter::Linear,
MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat,
SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap(); SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap();
let o : Box<dyn DescriptorSet + Send + Sync> = Box::new( let o: Box<dyn DescriptorSet + Send + Sync> = Box::new(
PersistentDescriptorSet::start( PersistentDescriptorSet::start(
self.shader_kernels.get(&ShaderType::COMPUTE).clone().unwrap().clone().get_pipeline(), 0 self.shader_kernels.get(&ShaderType::IMAGE).clone().unwrap().clone().get_pipeline(), 0,
) )
.add_image(compute_image.clone().get_swap_buffer().clone()).unwrap() .add_image(compute_image.clone().get_swap_buffer().clone()).unwrap()
.build().unwrap()); .build().unwrap());
o o
} }
/*
*/
pub fn draw_commands(&self, pub fn draw_commands(&self,
mut command_buffer: AutoCommandBufferBuilder, mut command_buffer: AutoCommandBufferBuilder,
framebuffers: Vec<Arc<dyn FramebufferAbstract + Send + Sync>>, framebuffers: Vec<Arc<dyn FramebufferAbstract + Send + Sync>>,
@ -378,7 +422,7 @@ impl Canvas {
let clear_values = vec!(ClearValue::Float([0.0, 0.0, 1.0, 1.0])); let clear_values = vec!(ClearValue::Float([0.0, 0.0, 1.0, 1.0]));
let mut command_buffer = command_buffer.begin_render_pass( let mut command_buffer = command_buffer.begin_render_pass(
framebuffers[image_num].clone(), false, clear_values.clone() framebuffers[image_num].clone(), false, clear_values.clone(),
).unwrap(); ).unwrap();
@ -389,17 +433,19 @@ impl Canvas {
kernel.clone().get_pipeline().clone(), kernel.clone().get_pipeline().clone(),
&self.dynamic_state.clone(), &self.dynamic_state.clone(),
self.colored_vertex_buffer.clone(), self.colored_vertex_buffer.clone(),
(), () (), (),
).unwrap(); ).unwrap();
}, }
ShaderType::TEXTURED => { ShaderType::TEXTURED => {
// command_buffer = command_buffer.draw( // command_buffer = command_buffer.draw(
// kernel.clone().get_pipeline().clone(), // kernel.clone().get_pipeline().clone(),
// &dynamic_state.clone(), self.textured_vertex_buffer.clone(), // &dynamic_state.clone(), self.textured_vertex_buffer.clone(),
// vec![self.get_textured_descriptor_set(String::from("funky-bird.jpg"))], () // vec![self.get_textured_descriptor_set(String::from("funky-bird.jpg"))], ()
// ).unwrap(); // ).unwrap();
}, }
ShaderType::COMPUTE => {}, ShaderType::IMAGE => {
}
} }
} }
@ -408,28 +454,6 @@ impl Canvas {
.unwrap() .unwrap()
} }
/// This method is called once during initialization, then again whenever the window is resized
pub fn window_size_dependent_setup(&mut self,
images: &[Arc<SwapchainImage<Window>>],
) -> Vec<Arc<dyn FramebufferAbstract + Send + Sync>> {
let dimensions = images[0].dimensions();
self.dynamic_state.viewports =
Some(vec![Viewport {
origin: [0.0, 0.0],
dimensions: [dimensions.width() as f32, dimensions.height() as f32],
depth_range: 0.0..1.0,
}]);
images.iter().map(|image| {
Arc::new(
Framebuffer::start(self.shader_kernels.get(&ShaderType::SOLID).unwrap().render_pass.clone())
.add(image.clone()).unwrap()
.build().unwrap()
) as Arc<dyn FramebufferAbstract + Send + Sync>
}).collect::<Vec<_>>()
}
} }

@ -182,6 +182,7 @@ impl CompuState {
dimensions: (u32, u32), dimensions: (u32, u32),
stride: u32, stride: u32,
device: Arc<Device>) -> Arc<u32> { device: Arc<Device>) -> Arc<u32> {
self.compute_buffers.push( self.compute_buffers.push(
CompuBuffers::new(device.clone(), data, dimensions, stride)); CompuBuffers::new(device.clone(), data, dimensions, stride));
@ -213,17 +214,18 @@ impl CompuState {
id id
} }
}
pub fn compute(&mut self, compute_frame: ComputeFrame) {
// i = (Buffer, Kernel)
for i in compute_frame.pure_compute {
}
}
}
/*
ComputeFrame accumulates combos of :
Buffers and Kernels
Buffers, Images and Kernels
Buffers, Buffers and Kernels
It will need to convert these into a logical list of command_buffer commands
*/
pub struct ComputeFrame { pub struct ComputeFrame {
// Vec<(Buffer, Kernel)> // Vec<(Buffer, Kernel)>
pure_compute: Vec<(Arc<u32>, Arc<u32>)>, pure_compute: Vec<(Arc<u32>, Arc<u32>)>,

@ -44,10 +44,6 @@ Canvas works, but I want to use CPU accessible buffer instead of immutable buffe
Texturing is broken Texturing is broken
Compute is running in the background, but don't have a way to draw it.
Would like to draw it to a sprite???
8/13 : 8/13 :
Okay. So I've decided to keep compute image and compute kernel in their own 'canvas' Okay. So I've decided to keep compute image and compute kernel in their own 'canvas'
@ -193,9 +189,9 @@ fn main() {
let mut window = surface.window(); let mut window = surface.window();
let mut processor = vkprocessor::VkProcessor::new(&instance, &surface); let mut processor = vkprocessor::VkProcessor::new(&instance, &surface);
processor.compile_kernel(String::from("simple-edge.compute")); // processor.compile_kernel(String::from("simple-edge.compute"));
processor.load_compute_image(String::from("background.jpg")); // processor.load_compute_image(String::from("background.jpg"));
processor.load_textures(String::from("funky-bird.jpg")); // processor.load_textures(String::from("funky-bird.jpg"));
processor.create_swapchain(&surface); processor.create_swapchain(&surface);
let mut timer = Timer::new(); let mut timer = Timer::new();
@ -231,6 +227,9 @@ fn main() {
let compute_kernel = processor.get_kernel_handle(String::from("simple-edge.compute")) let compute_kernel = processor.get_kernel_handle(String::from("simple-edge.compute"))
.expect("Can't find that kernel"); .expect("Can't find that kernel");
while let Some(p) = window.get_position() { while let Some(p) = window.get_position() {
elapsed_time = timer.elap_time(); elapsed_time = timer.elap_time();
@ -262,7 +261,7 @@ fn main() {
match keyboard_input.virtual_keycode.unwrap() { match keyboard_input.virtual_keycode.unwrap() {
VirtualKeyCode::A => { VirtualKeyCode::A => {
if keyboard_input.state == ElementState::Pressed { if keyboard_input.state == ElementState::Pressed {
processor.save_edges_image(); // processor.save_edges_image();
} }
} }
_ => () _ => ()

@ -40,45 +40,6 @@ pub struct VkProcessor<'a> {
impl<'a> VkProcessor<'a> { impl<'a> VkProcessor<'a> {
pub fn preload_textures(&mut self) {
}
pub fn preload_kernels(&mut self) {
}
pub fn preload_shaders(&mut self) {
}
pub fn get_texture_handle(&self, texture_name: String) -> Option<Arc<u32>> {
None
}
pub fn get_kernel_handle(&self, kernel_name: String) -> Option<Arc<u32>> {
None
}
pub fn get_shader_handle(&self, shader_name: String) -> Option<Arc<u32>> {
None
}
pub fn new_swap_image(&mut self, dimensions: (u32, u32)) -> Arc<u32> {
let mut usage = ImageUsage::none();
usage.transfer_destination = true;
usage.storage = true;
self.canvas.create_image(dimensions, usage)
}
pub fn new_compute_buffer(&mut self, data: Vec<u8>, dimensions: (u32, u32), stride: u32) -> Arc<u32> {
self.compute_state.new_compute_buffer(data, dimensions, stride, self.device.clone())
}
pub fn read_compute_buffer(&mut self, handle: Arc<u32>) -> Vec<u8> {
self.compute_state.read_compute_buffer(handle)
}
pub fn write_compute_buffer(&self, handle: Arc<u32>, data: Vec<u8>) {
self.compute_state.write_compute_buffer(handle, data)
}
pub fn new(instance: &'a Arc<Instance>, surface: &'a Arc<Surface<Window>>) -> VkProcessor<'a> { pub fn new(instance: &'a Arc<Instance>, surface: &'a Arc<Surface<Window>>) -> VkProcessor<'a> {
let physical = PhysicalDevice::enumerate(instance).next().unwrap(); let physical = PhysicalDevice::enumerate(instance).next().unwrap();
@ -117,10 +78,6 @@ impl<'a> VkProcessor<'a> {
} }
} }
pub fn compile_kernel(&mut self, filename: String) {
self.compute_kernel = Some(ComputeKernel::new(filename, self.device.clone()));
}
pub fn create_swapchain(&mut self, surface: &'a Arc<Surface<Window>>) { pub fn create_swapchain(&mut self, surface: &'a Arc<Surface<Window>>) {
let (mut swapchain, images) = { let (mut swapchain, images) = {
let capabilities = surface.capabilities(self.physical).unwrap(); let capabilities = surface.capabilities(self.physical).unwrap();
@ -177,20 +134,45 @@ impl<'a> VkProcessor<'a> {
self.swapchain_images = Some(new_images); self.swapchain_images = Some(new_images);
} }
pub fn load_compute_image(&mut self, image_filename: String) { pub fn preload_textures(&mut self) {
self.compute_image = Some(ComputeImage::new(self.device.clone(), image_filename.clone())); self.canvas.load_texture_from_filename(String::from("funky-bird.jpg"));
} }
pub fn preload_kernels(&mut self) {
pub fn load_textures(&mut self, image_filename: String) {
self.canvas.load_texture_from_filename(image_filename.clone());
} }
pub fn preload_shaders(&mut self) {
pub fn save_edges_image(&mut self) {
self.compute_image.clone().unwrap().clone().save_image();
} }
pub fn get_canvas(&mut self) -> &Canvas { pub fn get_texture_handle(&self, texture_name: String) -> Option<Arc<u32>> {
&self.canvas None
}
pub fn get_kernel_handle(&self, kernel_name: String) -> Option<Arc<u32>> {
None
}
pub fn get_shader_handle(&self, shader_name: String) -> Option<Arc<u32>> {
None
}
// Create a new image which has the transfer usage
pub fn new_swap_image(&mut self, dimensions: (u32, u32)) -> Arc<u32> {
let mut usage = ImageUsage::none();
usage.transfer_destination = true;
usage.storage = true;
self.canvas.create_image(dimensions, usage)
}
pub fn new_compute_buffer(&mut self, data: Vec<u8>, dimensions: (u32, u32), stride: u32) -> Arc<u32> {
self.compute_state.new_compute_buffer(data, dimensions, stride, self.device.clone())
}
pub fn read_compute_buffer(&mut self, handle: Arc<u32>) -> Vec<u8> {
self.compute_state.read_compute_buffer(handle)
}
pub fn write_compute_buffer(&self, handle: Arc<u32>, data: Vec<u8>) {
self.compute_state.write_compute_buffer(handle, data)
} }
pub fn run(&mut self, pub fn run(&mut self,
@ -198,13 +180,14 @@ impl<'a> VkProcessor<'a> {
mut frame_future: Box<dyn GpuFuture>, mut frame_future: Box<dyn GpuFuture>,
canvas_frame: CanvasFrame, canvas_frame: CanvasFrame,
compute_frame: ComputeFrame, compute_frame: ComputeFrame,
) -> Box<dyn GpuFuture> { )
-> Box<dyn GpuFuture> {
// take the canvas frame and create the vertex buffers
//
self.canvas.draw(canvas_frame); self.canvas.draw(canvas_frame);
self.canvas.allocate_vertex_buffers(self.device.clone());
// ditto with the compuframe
self.compute_state.compute(compute_frame);
let mut framebuffers = let mut framebuffers =
self.canvas.window_size_dependent_setup(&self.swapchain_images.clone().unwrap().clone()); self.canvas.window_size_dependent_setup(&self.swapchain_images.clone().unwrap().clone());

Loading…
Cancel
Save