Getting back up to date

master
mitchellhansen 5 years ago
parent 88b078d1ff
commit 8a83a1f12a

@ -0,0 +1,493 @@
use crate::util::vertex_2d::{Vertex2D};
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
use std::collections::HashMap;
use vulkano::buffer::{BufferAccess, BufferUsage, ImmutableBuffer, CpuAccessibleBuffer};
use std::sync::Arc;
use vulkano::format::{ClearValue, Format};
use vulkano::framebuffer::{FramebufferAbstract, Framebuffer};
use vulkano::device::{Device, Queue};
use vulkano::instance::PhysicalDevice;
use vulkano::image::immutable::ImmutableImage;
use vulkano::image::{Dimensions, ImageAccess, ImageDimensions, SwapchainImage, ImageUsage, AttachmentImage};
use vulkano::sampler::{Sampler, SamplerAddressMode, MipmapMode, Filter};
use vulkano::descriptor::DescriptorSet;
use vulkano::descriptor::descriptor_set::PersistentDescriptorSet;
use std::path::PathBuf;
use image::GenericImageView;
use std::iter::FromIterator;
use vulkano::swapchain::Capabilities;
use winit::Window;
use vulkano::pipeline::viewport::Viewport;
use vulkano::descriptor::descriptor::DescriptorDescTy::TexelBuffer;
use crate::canvas::canvas_frame::CanvasFrame;
use std::hash::Hash;
// Canvas is the accumulator of Sprites for drawing
// Needs to know:
// textured?
// colored?
// vertices
/*
If it is textured. It needs to be rendered with the texture shader which requires a separate
graphics pipeline. Might as well have a new render pass as well.
So framebuffer is tied to the swapchains images as well as the renderpass
it appears that renderpass is tied to the individual shader
*/
// I want to be able to draw 2d sprites.
// These sprites might be textured or a single color
// All of the single colors will be grouped into one batch using colored vertices.
// The rest will be grouped by their texture and run individually
pub trait Vertex {
fn position(&self) -> (f32, f32) {
(0.0, 0.0)
}
fn color(&self) -> Option<(f32, f32, f32, f32)> {
Some((0., 0., 0., 0.))
}
}
impl Vertex for ColoredVertex2D {
fn position(&self) -> (f32, f32) {
(0.0, 0.0)
}
fn color(&self) -> Option<(f32, f32, f32, f32)> {
Some((0., 0., 0., 0.))
}
}
pub trait Drawable {
fn get_vertices(&self) -> Vec<(f32, f32)>;
fn get_color(&self) -> (f32, f32, f32, f32);
fn get_texture_handle(&self) -> Option<Arc<CanvasTextureHandle>>;
fn get_image_handle(&self) -> Option<Arc<CanvasImageHandle>>;
}
// Need three types of shaders. Solid, Textured, Image
#[derive(PartialEq, Eq, Hash, Clone)]
pub enum ShaderType {
SOLID = 0,
TEXTURED = 1,
IMAGE = 2,
}
#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct CanvasTextureHandle {
pub handle: u32
}
#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct CanvasImageHandle {
pub handle: u32
}
#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct CanvasShaderHandle {
pub handle: u32
}
#[derive(Clone)]
pub struct CanvasTexture {
handle: Arc<CanvasTextureHandle>,
buffer: Arc<ImmutableImage<Format>>,
name: String,
size: (u32, u32),
}
impl CanvasTexture {
fn get_descriptor_set(&self,
shader: Arc<CanvasShader>,
sampler: Arc<Sampler>) -> Box<dyn DescriptorSet + Send + Sync> {
let o: Box<dyn DescriptorSet + Send + Sync> = Box::new(
PersistentDescriptorSet::start(
shader.clone().get_pipeline().clone(), 0,
)
.add_sampled_image(self.buffer.clone(), sampler.clone()).unwrap()
.build().unwrap());
o
}
}
#[derive(Clone)]
pub struct CanvasImage {
handle: Arc<CanvasImageHandle>,
buffer: Arc<AttachmentImage>,
size: (u32, u32),
}
impl CanvasImage {
fn get_descriptor_set(&mut self, shader: Arc<CanvasShader>)
-> Box<dyn DescriptorSet + Send + Sync> {
let o: Box<dyn DescriptorSet + Send + Sync> = Box::new(
PersistentDescriptorSet::start(
shader.clone().get_pipeline().clone(), 0,
)
.add_image(self.buffer.clone()).unwrap()
.build().unwrap());
o
}
}
#[derive(Clone)]
pub struct CanvasState {
dynamic_state: DynamicState,
sampler: Arc<Sampler>,
// hold the image, texture, and shader buffers the same was as we do CompuState
image_buffers: Vec<Arc<CanvasImage>>,
texture_buffers: Vec<Arc<CanvasTexture>>,
shader_buffers: HashMap<String, Arc<CanvasShader>>,
// Hold onto the vertices we get from the Compu and Canvas Frames
// When the run comes around, push the vertices to the GPU
colored_drawables: Vec<ColoredVertex2D>,
colored_vertex_buffer: Vec<Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync)>>,
textured_drawables: HashMap<Arc<CanvasTextureHandle>, Vec<Vec<Vertex2D>>>,
textured_vertex_buffer: HashMap<Arc<CanvasTextureHandle>, Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync)>>,
image_drawables: HashMap<Arc<CanvasImageHandle>, Vec<Vec<Vertex2D>>>,
image_vertex_buffer: HashMap<Arc<CanvasImageHandle>, Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync)>>,
// Looks like we gotta hold onto the queue for managing textures
queue: Arc<Queue>,
device: Arc<Device>,
}
impl CanvasState {
// This method is called once during initialization, then again whenever the window is resized
pub fn window_size_dependent_setup(&mut self, images: &[Arc<SwapchainImage<Window>>])
-> Vec<Arc<dyn FramebufferAbstract + Send + Sync>> {
let dimensions = images[0].dimensions();
self.dynamic_state.viewports =
Some(vec![Viewport {
origin: [0.0, 0.0],
dimensions: [dimensions.width() as f32, dimensions.height() as f32],
depth_range: 0.0..1.0,
}]);
images.iter().map(|image| {
Arc::new(
Framebuffer::start(self.shader_buffers.get("color-passthrough").unwrap().render_pass.clone())
.add(image.clone()).unwrap()
.build().unwrap()
) as Arc<dyn FramebufferAbstract + Send + Sync>
}).collect::<Vec<_>>()
}
// needs to take in the texture list
pub fn new(queue: Arc<Queue>,
device: Arc<Device>,
physical: PhysicalDevice,
capabilities: Capabilities) -> CanvasState {
let solid_color_kernel = String::from("color-passthrough");
let texture_kernel = String::from("simple_texture");
CanvasState {
dynamic_state: DynamicState { line_width: None, viewports: None, scissors: None, compare_mask: None, write_mask: None, reference: None },
sampler: Sampler::new(device.clone(), Filter::Linear, Filter::Linear,
MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat,
SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap(),
image_buffers: vec![],
texture_buffers: vec![],
shader_buffers: HashMap::from_iter(vec![
(solid_color_kernel.clone(), Arc::new(CanvasShader::new_colored(solid_color_kernel.clone(),
capabilities.clone(),
queue.clone(),
physical.clone(),
device.clone()))
),
(texture_kernel.clone(), Arc::new(CanvasShader::new_textured(texture_kernel.clone(),
capabilities.clone(),
queue.clone(),
physical.clone(),
device.clone()))
),
]),
colored_drawables: vec![],
colored_vertex_buffer: vec![],
textured_drawables: HashMap::default(),
textured_vertex_buffer: Default::default(),
image_drawables: Default::default(),
image_vertex_buffer: Default::default(),
queue: queue.clone(),
device: device.clone(),
}
}
pub fn create_image(&mut self, dimensions: (u32, u32), usage: ImageUsage) -> Arc<CanvasImageHandle> {
let handle = Arc::new(CanvasImageHandle { handle: self.image_buffers.len() as u32});
let image = CanvasImage {
handle: handle.clone(),
buffer: AttachmentImage::with_usage(
self.device.clone(),
[dimensions.0, dimensions.1],
Format::R8G8B8A8Uint,
usage).unwrap(),
size: dimensions,
};
self.image_buffers.push(Arc::new(image));
handle
}
pub fn get_image(&self, image_handle: Arc<CanvasImageHandle>) -> Arc<AttachmentImage> {
self.image_buffers.get((*image_handle).clone().handle as usize).unwrap()
.clone().buffer.clone()
}
// TODO Handle file not found gracefully
fn get_texture_from_file(&self, image_filename: String) -> Arc<ImmutableImage<Format>> {
let project_root =
std::env::current_dir()
.expect("failed to get root directory");
let mut compute_path = project_root.clone();
compute_path.push(PathBuf::from("resources/images/"));
compute_path.push(PathBuf::from(image_filename));
let img = image::open(compute_path).expect("Couldn't find image");
let xy = img.dimensions();
let data_length = xy.0 * xy.1 * 4;
let pixel_count = img.raw_pixels().len();
let mut image_buffer = Vec::new();
if pixel_count != data_length as usize {
println!("Creating apha channel...");
for i in img.raw_pixels().iter() {
if (image_buffer.len() + 1) % 4 == 0 {
image_buffer.push(255);
}
image_buffer.push(*i);
}
image_buffer.push(255);
} else {
image_buffer = img.raw_pixels();
}
let (texture, tex_future) = ImmutableImage::from_iter(
image_buffer.iter().cloned(),
Dimensions::Dim2d { width: xy.0, height: xy.1 },
Format::R8G8B8A8Srgb,
self.queue.clone(),
).unwrap();
texture
}
pub fn load_texture(&mut self, filename: String) -> Option<Arc<CanvasTextureHandle>> {
let texture_buffer = self.get_texture_from_file(filename.clone());
let handle = Arc::new(CanvasTextureHandle {
handle: self.texture_buffers.len() as u32
});
let texture = Arc::new(CanvasTexture {
handle: handle.clone(),
buffer: self.get_texture_from_file(filename.clone()),
name: filename.clone(),
size: (0, 0),
});
self.texture_buffers.push(texture);
Some(handle)
}
pub fn get_texture_handle(&self, texture_name: String)
-> Option<Arc<CanvasTextureHandle>> {
for i in self.texture_buffers.clone() {
if i.name == texture_name {
return Some(i.handle.clone());
}
}
None
}
pub fn get_texture(&self, texture_handle: Arc<CanvasTextureHandle>)
-> Arc<ImmutableImage<Format>> {
let handle = texture_handle.handle as usize;
if let Some(i) = self.texture_buffers.get(handle) {
return i.clone().buffer.clone();
} else {
panic!("{} : Texture not loaded", handle);
}
}
// After done using this, need to call allocated vertex buffers
pub fn draw(&mut self, canvas_frame: CanvasFrame) {
self.textured_drawables = canvas_frame.textured_drawables;
self.colored_drawables = canvas_frame.colored_drawables;
self.image_drawables = canvas_frame.image_drawables;
self.allocate_vertex_buffers(self.device.clone());
}
fn allocate_vertex_buffers(&mut self, device: Arc<Device>) {
self.colored_vertex_buffer.clear();
self.textured_vertex_buffer.clear();
self.image_vertex_buffer.clear();
//TODO should probably use cpu accessible buffer instead of recreating immutes each frame
/*
CpuAccessibleBuffer::from_iter(
device.clone(),
BufferUsage::vertex_buffer(),
self.colored_drawables.iter().cloned(),
).unwrap().0;
*/
self.colored_vertex_buffer.push(
ImmutableBuffer::from_iter(
self.colored_drawables.iter().cloned(),
BufferUsage::vertex_buffer(),
self.queue.clone(),
).unwrap().0
);
for (k, v) in self.textured_drawables.drain() {
self.textured_vertex_buffer.insert(
k.clone(),
ImmutableBuffer::from_iter(
// TODO: bad bad bad adbadbadbab
v.first().unwrap().iter().cloned(),
BufferUsage::vertex_buffer(),
self.queue.clone(),
).unwrap().0,
);
}
}
fn get_solid_color_descriptor_set(&self, kernel: Arc<CanvasShader>) -> Box<dyn DescriptorSet + Send + Sync> {
let o: Box<dyn DescriptorSet + Send + Sync> = Box::new(
PersistentDescriptorSet::start(
kernel.clone().get_pipeline().clone(), 0,
).build().unwrap());
o
}
pub fn draw_commands(&self,
mut command_buffer: AutoCommandBufferBuilder,
framebuffers: Vec<Arc<dyn FramebufferAbstract + Send + Sync>>,
image_num: usize) -> AutoCommandBufferBuilder {
// Specify the color to clear the framebuffer with i.e. blue
let clear_values = vec!(ClearValue::Float([0.0, 0.0, 1.0, 1.0]));
let mut command_buffer = command_buffer.begin_render_pass(
framebuffers[image_num].clone(), false, clear_values.clone(),
).unwrap();
// Solid colors
let mut shader = self.shader_buffers.get("color-passthrough").unwrap().clone();
command_buffer = command_buffer.draw(
shader.get_pipeline().clone(),
&self.dynamic_state.clone(),
self.colored_vertex_buffer.clone(),
(), (),
).unwrap();
// Images
let mut shader = self.shader_buffers.get("simple_texture").unwrap().clone();
let handle = self.get_texture_handle(String::from("funky-bird.jpg")).unwrap().clone();
// TODO: bad bad bad
// Only uses the first texture
let descriptor_set = self.texture_buffers.first().clone().unwrap().clone()
.get_descriptor_set(shader.clone(), self.sampler.clone());
let vertex_buffer = self.textured_vertex_buffer.get(&handle).unwrap().clone();
command_buffer = command_buffer.draw(
shader.get_pipeline().clone(),
&self.dynamic_state.clone(), vec![vertex_buffer],
vec![descriptor_set], ()
).unwrap();
/*for (shader_type, kernel) in self.shader_kernels.clone().iter() {
match shader_type {
ShaderType::SOLID => {
}
ShaderType::TEXTURED => {
command_buffer = command_buffer.draw(
kernel.clone().get_pipeline().clone(),
&dynamic_state.clone(), self.textured_vertex_buffer.clone(),
vec![self.get_textured_descriptor_set(String::from("funky-bird.jpg"))], ()
).unwrap();
}
ShaderType::IMAGE => {}
}
}*/
command_buffer
.end_render_pass()
.unwrap()
}
}

@ -4,6 +4,7 @@ pub mod canvas_frame;
pub mod shader; pub mod shader;
pub mod canvas_text; pub mod canvas_text;
pub mod canvas_buffer; pub mod canvas_buffer;
pub mod canvas;
use crate::canvas::canvas_frame::CanvasFrame; use crate::canvas::canvas_frame::CanvasFrame;

@ -23,13 +23,14 @@ use crate::compute::compu_buffer::{CompuBuffers, CompuBufferHandle};
use crate::compute::compu_frame::CompuFrame; use crate::compute::compu_frame::CompuFrame;
// Canvas analog /// State holding the compute buffers for computation and the kernels which will compute them
pub struct CompuState { pub struct CompuState {
compute_buffers: Vec<CompuBuffers>, compute_buffers: Vec<CompuBuffers>,
kernels: Vec<CompuKernel>, kernels: Vec<CompuKernel>,
} }
impl CompuState { impl CompuState {
pub fn new() -> CompuState { pub fn new() -> CompuState {
CompuState { CompuState {
compute_buffers: vec![], compute_buffers: vec![],
@ -37,11 +38,13 @@ impl CompuState {
} }
} }
/// Creates a 2d compute buffer from incoming data
pub fn new_compute_buffer(&mut self, pub fn new_compute_buffer(&mut self,
data: Vec<u8>, data: Vec<u8>,
dimensions: (u32, u32), dimensions: (u32, u32),
stride: u32, stride: u32,
device: Arc<Device>) -> Arc<CompuBufferHandle> { device: Arc<Device>) -> Arc<CompuBufferHandle> {
let handle = Arc::new(CompuBufferHandle { let handle = Arc::new(CompuBufferHandle {
handle: self.compute_buffers.len() as u32 handle: self.compute_buffers.len() as u32
}); });
@ -52,13 +55,18 @@ impl CompuState {
handle handle
} }
/// Read the compute buffer back into a Vec (TODO BROKEN)
pub fn read_compute_buffer(&mut self, handle: Arc<CompuBufferHandle>) -> Vec<u8> { pub fn read_compute_buffer(&mut self, handle: Arc<CompuBufferHandle>) -> Vec<u8> {
// This is way more difficult than it should be // This is way more difficult than it should be
//let compute_buffer : CompuBuffers = self.compute_buffers.get(handle.into()).unwrap(); //let compute_buffer : CompuBuffers = self.compute_buffers.get(handle.into()).unwrap();
//compute_buffer.read_output_buffer().to_vec() //compute_buffer.read_output_buffer().to_vec()
Vec::new() unimplemented!("read_compute_buffer is not implemented")
}
/// Write to the compute buffer, ostensibly overwriting what's already there
pub fn write_compute_buffer(&self, handle: Arc<CompuBufferHandle>, data: Vec<u8>) {
unimplemented!("read_compute_buffer is not implemented")
} }
pub fn write_compute_buffer(&self, handle: Arc<CompuBufferHandle>, data: Vec<u8>) {}
pub fn new_kernel(&mut self, pub fn new_kernel(&mut self,
filename: String, filename: String,

@ -36,8 +36,25 @@ pub mod sprite;
pub mod canvas; pub mod canvas;
pub mod compute; pub mod compute;
/*
Trac3r : A program to convert images to 2D toolpaths
TODO:
+ Text rendering is half implemented.
+ Need generalized interface for render (image, texture, text)
+ Currently using local copies of a few libraries:
shade_runner
vulkano/vulkano-win
vulkano/vulkano-shaders
vulkano/vulkano
+ Need to generate runtime vertex definitions if I want to have on the fly shaders
*/
/// Main Entry
pub fn main() { pub fn main() {
hprof::start_frame(); hprof::start_frame();
@ -59,6 +76,7 @@ pub fn main() {
let mut window = surface.window(); let mut window = surface.window();
let mut processor = vkprocessor::VkProcessor::new(&instance, &surface); let mut processor = vkprocessor::VkProcessor::new(&instance, &surface);
{ {
let g = hprof::enter("vulkan preload"); let g = hprof::enter("vulkan preload");
processor.create_swapchain(&surface); processor.create_swapchain(&surface);
@ -112,20 +130,24 @@ pub fn main() {
let mut count = 0; let mut count = 0;
while let Some(p) = window.get_position() { while let true = processor.is_open() {
elapsed_time = timer.elap_time();
delta_time = elapsed_time - current_time; // Take care of our timing
current_time = elapsed_time; {
if delta_time > 0.02 { elapsed_time = timer.elap_time();
delta_time = 0.02; delta_time = elapsed_time - current_time;
current_time = elapsed_time;
if delta_time > 0.02 {
delta_time = 0.02;
}
accumulator_time += delta_time;
} }
accumulator_time += delta_time;
while (accumulator_time - step_size) >= step_size { while (accumulator_time - step_size) >= step_size {
accumulator_time -= step_size; accumulator_time -= step_size;
} }
// println!("{}", delta_time); // Events loop is borrowed from the surface
events_loop.poll_events(|event| { events_loop.poll_events(|event| {
match event { match event {
Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => Event::WindowEvent { event: WindowEvent::CloseRequested, .. } =>
@ -156,21 +178,13 @@ pub fn main() {
break; break;
} }
let mut compu_frame = CompuFrame::new(); // let mut compu_frame = CompuFrame::new();
compu_frame.add(compute_buffer.clone(), compute_kernel.clone()); // compu_frame.add(compute_buffer.clone(), compute_kernel.clone());
compu_frame.add_with_image_swap(compute_buffer.clone(), compute_kernel.clone(), &compu_sprite1); // compu_frame.add_with_image_swap(compute_buffer.clone(), compute_kernel.clone(), &compu_sprite1);
//
// let mut canvas = CanvasFrame::new();
let mut canvas = CanvasFrame::new(); // canvas.draw(&funky_sprite);
canvas.draw(&funky_sprite); // canvas.draw(&test_polygon);
canvas.draw(&test_polygon);
{ {
let g = hprof::enter("Run"); let g = hprof::enter("Run");

@ -23,8 +23,8 @@ use crate::canvas::shader::text_shader::{TextShader, GlyphInstance};
use vulkano::pipeline::vertex::{OneVertexOneInstanceDefinition, SingleBufferDefinition}; use vulkano::pipeline::vertex::{OneVertexOneInstanceDefinition, SingleBufferDefinition};
use crate::util::vertex_3d::Vertex3D; use crate::util::vertex_3d::Vertex3D;
/// VKProcessor holds the vulkan instance information, the swapchain, and the compute and canvas states /// VKProcessor holds the vulkan instance information, the swapchain,
/// /// and the compute and canvas states
pub struct VkProcessor<'a> { pub struct VkProcessor<'a> {
// Vulkan state fields // Vulkan state fields
pub instance: Arc<Instance>, pub instance: Arc<Instance>,
@ -38,10 +38,13 @@ pub struct VkProcessor<'a> {
swapchain_recreate_needed: bool, swapchain_recreate_needed: bool,
/// State holding textures, images, and their related vertex buffers
canvas_state: CanvasState,
/// State holding
compute_state: CompuState, compute_state: CompuState,
capabilities: Capabilities, capabilities: Capabilities,
canvas_state: CanvasState,
} }
@ -85,6 +88,10 @@ impl<'a> VkProcessor<'a> {
} }
} }
pub fn is_open(&mut self) -> bool {
self.surfcae
}
/// Using the surface, we calculate the surface capabilities and create the swapchain and swapchain images /// Using the surface, we calculate the surface capabilities and create the swapchain and swapchain images
pub fn create_swapchain(&mut self, surface: &'a Arc<Surface<Window>>) { pub fn create_swapchain(&mut self, surface: &'a Arc<Surface<Window>>) {
let (mut swapchain, images) = { let (mut swapchain, images) = {
@ -213,6 +220,7 @@ impl<'a> VkProcessor<'a> {
self.compute_state.write_compute_buffer(handle, data) self.compute_state.write_compute_buffer(handle, data)
} }
///
pub fn run(&mut self, pub fn run(&mut self,
surface: &'a Arc<Surface<Window>>, surface: &'a Arc<Surface<Window>>,
canvas_frame: CanvasFrame, canvas_frame: CanvasFrame,

Loading…
Cancel
Save