Got the compute thing going. Needs to be run before the rasterizer but that's fine

master
mitchellhansen 5 years ago
parent 751b7641b2
commit d6b81ae468

@ -11,13 +11,13 @@ simple-stopwatch="0.1.4"
nalgebra = "0.18.0"
image = "0.21.2"
rand = "0.6.5"
#vulkano = "0.12.0"
vulkano = {path = "../vulkano/vulkano"}
#vulkano-shaders = "0.12.0"
#vulkano-win = "0.13.0"
vulkano = "0.13.0"
#vulkano = {path = "../vulkano/vulkano"}
vulkano-shaders = "0.13.0"
vulkano-win = "0.13.0"
time = "0.1.38"
shaderc = "0.5.0"
#shade_runner = {version = "0.1.1", git = "https://github.com/MitchellHansen/shade_runner"}
shade_runner = {path = "../shade_runner"}
shade_runner = {version = "0.1.1", git = "https://github.com/MitchellHansen/shade_runner"}
#shade_runner = {path = "../shade_runner"}
winit = "0.19.1"

@ -3,6 +3,8 @@
#![allow(unused_variables)]
#![allow(unused_mut)]
/*
extern crate cgmath;
extern crate image;
extern crate nalgebra as na;
@ -58,7 +60,6 @@ What next?
Second sprite for rendering paths at x10 or so resolution
color bucketing
Textures and Sprites cannot live in the same struct as there is no way for a sprite to own
its texture and become a single object (rust self-referencing structs)
@ -81,8 +82,6 @@ frequent updates to the screen...
Let's take a look at how easy it would be to replace SFML...
*/
fn main() {
let font = Font::from_file("resources/fonts/sansation.ttf").unwrap();
@ -206,13 +205,12 @@ fn main() {
window.display();
}
}
*/
/*
//use vulkano::buffer::{BufferAccess, BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer};
//use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
//use vulkano::descriptor::descriptor_set::{PersistentDescriptorSet, PersistentDescriptorSetBuf, StdDescriptorPoolAlloc};
@ -553,7 +551,7 @@ void main() {
vulkano::pipeline::shader::ShaderModule::from_words(device.clone(), &shader.compute)
}.unwrap();
let pipeline = Arc::new({
let c_pipeline = Arc::new({
unsafe {
ComputePipeline::new(device.clone(), &x.compute_entry_point(
CStr::from_bytes_with_nul_unchecked(b"main\0"),
@ -561,7 +559,82 @@ void main() {
).unwrap()
}
});
}
let project_root =
std::env::current_dir()
.expect("failed to get root directory");
let mut compute_path = project_root.clone();
compute_path.push(PathBuf::from("resources/images/"));
compute_path.push(PathBuf::from("funky-bird.jpg"));
let img = image::open(compute_path).expect("Couldn't find image");
let xy = img.dimensions();
let data_length = xy.0 * xy.1 * 4;
let pixel_count = img.raw_pixels().len();
println!("Pixel count {}", pixel_count);
let mut image_buffer = Vec::new();
if pixel_count != data_length as usize {
println!("Creating apha channel...");
for i in img.raw_pixels().iter() {
if (image_buffer.len() + 1) % 4 == 0 {
image_buffer.push(255);
}
image_buffer.push(*i);
}
image_buffer.push(255);
} else {
image_buffer = img.raw_pixels();
}
println!("Buffer length {}", image_buffer.len());
println!("Size {:?}", xy);
println!("Allocating Buffers...");
// Pull out the image data and place it in a buffer for the kernel to write to and for us to read from
let write_buffer = {
let mut buff = image_buffer.iter();
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
};
// Pull out the image data and place it in a buffer for the kernel to read from
let read_buffer = {
let mut buff = image_buffer.iter();
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
};
// A buffer to hold many i32 values to use as settings
let settings_buffer = {
let vec = vec![xy.0, xy.1];
let mut buff = vec.iter();
let data_iter =
(0..2).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(device.clone(),
BufferUsage::all(),
data_iter).unwrap()
};
println!("Done");
// Create the data descriptor set for our previously created shader pipeline
let mut set =
PersistentDescriptorSet::start(c_pipeline.clone(), 0)
.add_buffer(write_buffer.clone()).unwrap()
.add_buffer(read_buffer.clone()).unwrap()
.add_buffer(settings_buffer.clone()).unwrap();
let mut set = Arc::new(set.build().unwrap());
// In order to draw, we have to build a *command buffer*. The command buffer object holds
// the list of commands that are going to be executed.
@ -572,7 +645,13 @@ void main() {
//
// Note that we have to pass a queue family when we create the command buffer. The command
// buffer will only be executable on that given queue family.
let command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family()).unwrap()
let command_buffer =
AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family())
.unwrap()
.dispatch([xy.0, xy.1, 1],
c_pipeline.clone(),
set.clone(), ()).unwrap()
// Before we can draw, we have to *enter a render pass*. There are two methods to do
// this: `draw_inline` and `draw_secondary`. The latter is a bit more advanced and is
// not covered here.
@ -583,6 +662,7 @@ void main() {
.begin_render_pass(framebuffers[image_num].clone(), false, clear_values)
.unwrap()
// We are now inside the first subpass of the render pass. We add a draw command.
//
// The last two parameters contain the list of resources to pass to the shaders.
@ -624,7 +704,7 @@ void main() {
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
}
}
}
// Note that in more complex programs it is likely that one of `acquire_next_image`,
// `command_buffer::submit`, or `present` will block for some time. This happens when the
// GPU's queue is full and the driver has to wait until the GPU finished some work.
@ -671,5 +751,3 @@ fn window_size_dependent_setup(
}).collect::<Vec<_>>()
}
*/
Loading…
Cancel
Save