Merge pull request #1 from MitchellHansen/debugging

Pulling in the debug of the frame timing
master
Mitchell 5 years ago committed by GitHub
commit e8ddb67b9e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -20,3 +20,5 @@ shaderc = "0.5.0"
#shade_runner = {version = "0.1.1", git = "https://github.com/MitchellHansen/shade_runner"}
shade_runner = {path = "../shade_runner"}
winit = "0.19.1"
#criterion = "0.3.0"
hprof = "0.1.3"

@ -1,9 +1,11 @@
#version 450
// These come in from the previous shader (vertex)
layout(location = 0) in vec4 out_color;
// This goes out to the bound image in window_size_dependent setup
layout(location = 0) out vec4 f_color;
void main() {
f_color = out_color;
}

@ -1,7 +1,10 @@
#version 450
// These come in from the vertex definition
layout(location = 0) in vec2 position;
layout(location = 1) in vec4 color;
// These are made up in the shader themselves
layout(location = 0) out vec4 out_color;
void main() {

@ -1,6 +1,6 @@
#version 450
layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
layout(set = 0, binding = 0) buffer wData {
int buf[];
@ -58,7 +58,6 @@ void main() {
p.z = 255;
}
else {
//p.w = 125;
}
@ -69,10 +68,6 @@ void main() {
}
// Just gonna keep this around
// read_buffer.buf[idx] = (read_buffer.buf[idx] & (~0x000000FF) ) | (p.x);
// read_buffer.buf[idx] = (read_buffer.buf[idx] & (~0x0000FF00) ) | (p.y << 8);

@ -1,8 +1,14 @@
#version 450
// SIMPLE TEXTURE : FRAGMENT SHADER
// These come in from the previous shader (vertex)
layout(location = 0) in vec2 tex_coords;
// This goes out to the bound image in window_size_dependent setup
layout(location = 0) out vec4 f_color;
// This is bound by the descriptor set
// Currently handled by the individual buffer and are 1:1
layout(set = 0, binding = 0) uniform sampler2D tex;
void main() {

@ -1,10 +1,16 @@
#version 450
// SIMPLE TEXTURE : VERTEX SHADER
// These come in from the vertex definition
// TODO : Need to add texture coordinate attribute so I can single VBO all these sumbitches
layout(location = 0) in vec2 position;
// These are made up in the shader themselves
layout(location = 0) out vec2 tex_coords;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
tex_coords = position;
}

@ -22,46 +22,26 @@ use vulkano::descriptor::descriptor::DescriptorDescTy::TexelBuffer;
use crate::canvas_frame::CanvasFrame;
use std::hash::Hash;
use crate::canvas_shader::CanvasShader;
// Canvas is the accumulator of Sprites for drawing
// Needs to know:
// textured?
// colored?
// vertices
use crate::canvas_buffer::{CanvasImage, CanvasTexture};
/*
If it is textured. It needs to be rendered with the texture shader which requires a separate
graphics pipeline. Might as well have a new render pass as well.
So framebuffer is tied to the swapchains images as well as the renderpass
it appears that renderpass is tied to the individual shader
*/
// I want to be able to draw 2d sprites.
// These sprites might be textured or a single color
// All of the single colors will be grouped into one batch using colored vertices.
// The rest will be grouped by their texture and run individually
/// Vertex trait for Drawable Vertices.
pub trait Vertex {
fn position(&self) -> (f32, f32) {
(0.0, 0.0)
}
fn color(&self) -> Option<(f32, f32, f32, f32)> {
Some((0., 0., 0., 0.))
}
}
impl Vertex for ColoredVertex2D {
fn position(&self) -> (f32, f32) {
(0.0, 0.0)
@ -72,6 +52,8 @@ impl Vertex for ColoredVertex2D {
}
}
/// A drawable object can be passed into a CanvasFrame to be rendered
/// Allows Texture or Image drawing via their handles
pub trait Drawable {
fn get_vertices(&self) -> Vec<(f32, f32)>;
fn get_color(&self) -> (f32, f32, f32, f32);
@ -79,7 +61,7 @@ pub trait Drawable {
fn get_image_handle(&self) -> Option<Arc<CanvasImageHandle>>;
}
// Need three types of shaders. Solid, Textured, Image
/// Legacy ShaderType enum for single type shaders.
#[derive(PartialEq, Eq, Hash, Clone)]
pub enum ShaderType {
SOLID = 0,
@ -87,64 +69,18 @@ pub enum ShaderType {
IMAGE = 2,
}
/// Typed wrapper for a u32 texture handle (index id)
#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct CanvasTextureHandle {
pub handle: u32
}
/// Typed wrapper for a u32 image handle (index id)
#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct CanvasImageHandle {
pub handle: u32
}
#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct CanvasShaderHandle {
pub handle: u32
}
#[derive(Clone)]
pub struct CanvasTexture {
handle: Arc<CanvasTextureHandle>,
buffer: Arc<ImmutableImage<Format>>,
name: String,
size: (u32, u32),
}
impl CanvasTexture {
fn get_descriptor_set(&self,
shader: Arc<CanvasShader>,
sampler: Arc<Sampler>) -> Box<dyn DescriptorSet + Send + Sync> {
let o: Box<dyn DescriptorSet + Send + Sync> = Box::new(
PersistentDescriptorSet::start(
shader.clone().get_pipeline().clone(), 0,
)
.add_sampled_image(self.buffer.clone(), sampler.clone()).unwrap()
.build().unwrap());
o
}
}
#[derive(Clone)]
pub struct CanvasImage {
handle: Arc<CanvasImageHandle>,
buffer: Arc<AttachmentImage>,
size: (u32, u32),
}
impl CanvasImage {
fn get_descriptor_set(&mut self, shader: Arc<CanvasShader>)
-> Box<dyn DescriptorSet + Send + Sync> {
let o: Box<dyn DescriptorSet + Send + Sync> = Box::new(
PersistentDescriptorSet::start(
shader.clone().get_pipeline().clone(), 0,
)
.add_image(self.buffer.clone()).unwrap()
.build().unwrap());
o
}
}
#[derive(Clone)]
pub struct CanvasState {
dynamic_state: DynamicState,
@ -200,9 +136,6 @@ impl CanvasState {
physical: PhysicalDevice,
capabilities: Capabilities) -> CanvasState {
let solid_color_kernel = String::from("color-passthrough");
let texture_kernel = String::from("simple_texture");
CanvasState {
dynamic_state: DynamicState { line_width: None, viewports: None, scissors: None },
sampler: Sampler::new(device.clone(), Filter::Linear, Filter::Linear,
@ -210,20 +143,7 @@ impl CanvasState {
SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap(),
image_buffers: vec![],
texture_buffers: vec![],
shader_buffers: HashMap::from_iter(vec![
(solid_color_kernel.clone(), Arc::new(CanvasShader::new_colored(solid_color_kernel.clone(),
capabilities.clone(),
queue.clone(),
physical.clone(),
device.clone()))
),
(texture_kernel.clone(), Arc::new(CanvasShader::new_textured(texture_kernel.clone(),
capabilities.clone(),
queue.clone(),
physical.clone(),
device.clone()))
),
]),
shader_buffers: HashMap::from_iter(vec![]),
colored_drawables: vec![],
colored_vertex_buffer: vec![],
@ -238,7 +158,6 @@ impl CanvasState {
}
pub fn create_image(&mut self, dimensions: (u32, u32), usage: ImageUsage) -> Arc<CanvasImageHandle> {
let handle = Arc::new(CanvasImageHandle { handle: self.image_buffers.len() as u32 });
let image = CanvasImage {
@ -322,9 +241,24 @@ impl CanvasState {
Some(handle)
}
/// Load and Compile a shader with the filename at resources/shaders
/// Takes physical and capabilities as we don't store that in Canvas
pub fn load_shader(&mut self,
filename: String,
physical: PhysicalDevice,
capabilities: Capabilities) {
self.shader_buffers.insert(filename.clone(),
Arc::new(CanvasShader::new_colored(filename.clone(),
capabilities.clone(),
self.queue.clone(),
physical.clone(),
self.device.clone())));
}
/// Using the texture name, iterates through the stored textures and matches by the name
pub fn get_texture_handle(&self, texture_name: String)
-> Option<Arc<CanvasTextureHandle>> {
for i in self.texture_buffers.clone() {
if i.name == texture_name {
return Some(i.handle.clone());
@ -333,9 +267,9 @@ impl CanvasState {
None
}
/// Using the texture handle, grab the stored texture and return the buffer
pub fn get_texture(&self, texture_handle: Arc<CanvasTextureHandle>)
-> Arc<ImmutableImage<Format>> {
let handle = texture_handle.handle as usize;
if let Some(i) = self.texture_buffers.get(handle) {
@ -345,30 +279,22 @@ impl CanvasState {
}
}
// After done using this, need to call allocated vertex buffers
/// Scrape all the values from the CanvasFrame and then allocate the vertex buffers
pub fn draw(&mut self, canvas_frame: CanvasFrame) {
self.textured_drawables = canvas_frame.textured_drawables;
self.colored_drawables = canvas_frame.colored_drawables;
self.image_drawables = canvas_frame.image_drawables;
self.allocate_vertex_buffers(self.device.clone());
self.allocate_vertex_buffers();
}
fn allocate_vertex_buffers(&mut self, device: Arc<Device>) {
self.colored_vertex_buffer.clear();
self.textured_vertex_buffer.clear();
self.image_vertex_buffer.clear();
//TODO should probably use cpu accessible buffer instead of recreating immutes each frame
/*
CpuAccessibleBuffer::from_iter(
device.clone(),
BufferUsage::vertex_buffer(),
self.colored_drawables.iter().cloned(),
).unwrap().0;
*/
/// draw(canvas_fame) stored all the intermediate information, this function
/// allocates the vertex buffers using that information
fn allocate_vertex_buffers(&mut self) {
self.colored_vertex_buffer.clear();
{
let g = hprof::enter("Colored Vertex Buffer");
self.colored_vertex_buffer.push(
ImmutableBuffer::from_iter(
self.colored_drawables.iter().cloned(),
@ -376,9 +302,12 @@ impl CanvasState {
self.queue.clone(),
).unwrap().0
);
}
self.textured_vertex_buffer.clear();
{
let g = hprof::enter("Textured Vertex Buffer");
for (k, v) in self.textured_drawables.drain() {
println!("{:?}", v.len());
self.textured_vertex_buffer.insert(
k.clone(),
ImmutableBuffer::from_iter(
@ -390,8 +319,24 @@ impl CanvasState {
}
}
fn get_solid_color_descriptor_set(&self, kernel: Arc<CanvasShader>) -> Box<dyn DescriptorSet + Send + Sync> {
self.image_vertex_buffer.clear();
{
let g = hprof::enter("Image Vertex Buffer");
for (k, v) in self.image_drawables.drain() {
self.image_vertex_buffer.insert(
k.clone(),
ImmutableBuffer::from_iter(
v.first().unwrap().iter().cloned(),
BufferUsage::vertex_buffer(),
self.queue.clone(),
).unwrap().0,
);
}
}
}
/// Builds the descriptor set for solid colors using the input kernel (needs to support solid colors)
fn get_solid_color_descriptor_set(&self, kernel: Arc<CanvasShader>) -> Box<dyn DescriptorSet + Send + Sync> {
let o: Box<dyn DescriptorSet + Send + Sync> = Box::new(
PersistentDescriptorSet::start(
kernel.clone().get_pipeline().clone(), 0,
@ -399,6 +344,7 @@ impl CanvasState {
o
}
/// Pushes the draw commands s
pub fn draw_commands(&self,
mut command_buffer: AutoCommandBufferBuilder,
framebuffers: Vec<Arc<dyn FramebufferAbstract + Send + Sync>>,
@ -414,47 +360,55 @@ impl CanvasState {
// Solid colors
let mut shader = self.shader_buffers.get("color-passthrough").unwrap().clone();
// This looks a little weird as colored_vertex_buffer is a vec of GPU allocated vecs.
// But we can pass in multiple vertex buffers
if !self.colored_vertex_buffer.is_empty() {
command_buffer = command_buffer.draw(
shader.get_pipeline().clone(),
&self.dynamic_state.clone(),
self.colored_vertex_buffer.clone(),
(), (),
).unwrap();
}
// Images
// Textures
let mut shader = self.shader_buffers.get("simple_texture").unwrap().clone();
if !self.textured_vertex_buffer.is_empty() {
let handle = self.get_texture_handle(String::from("funky-bird.jpg")).unwrap().clone();
// TODO : BAD BAD BAD. SELECTS FIRST TEXTURE ONLY!!!!!!!!!!!!
let descriptor_set = self.texture_buffers.first().clone().unwrap().clone()
.get_descriptor_set(shader.clone(), self.sampler.clone());
let vertex_buffer = self.textured_vertex_buffer.get(&handle).unwrap().clone();
println!("{:?}", self.texture_buffers.len());
command_buffer = command_buffer.draw(
shader.get_pipeline().clone(),
&self.dynamic_state.clone(), vec![vertex_buffer],
vec![descriptor_set], ()
vec![descriptor_set], (),
).unwrap();
}
/*for (shader_type, kernel) in self.shader_kernels.clone().iter() {
match shader_type {
ShaderType::SOLID => {
}
ShaderType::TEXTURED => {
let mut shader = self.shader_buffers.get("simple-image").unwrap().clone();
if !self.image_vertex_buffer.is_empty() {
let handle = self.get_texture_handle(String::from("funky-bird.jpg")).unwrap().clone();
// TODO : BAD BAD BAD. SELECTS FIRST TEXTURE ONLY!!!!!!!!!!!!
let descriptor_set = self.texture_buffers.first().clone().unwrap().clone()
.get_descriptor_set(shader.clone(), self.sampler.clone());
let vertex_buffer = self.textured_vertex_buffer.get(&handle).unwrap().clone();
command_buffer = command_buffer.draw(
kernel.clone().get_pipeline().clone(),
&dynamic_state.clone(), self.textured_vertex_buffer.clone(),
vec![self.get_textured_descriptor_set(String::from("funky-bird.jpg"))], ()
shader.get_pipeline().clone(),
&self.dynamic_state.clone(), vec![vertex_buffer],
vec![descriptor_set], (),
).unwrap();
}
ShaderType::IMAGE => {}
}
}*/
command_buffer
.end_render_pass()

@ -0,0 +1,50 @@
use crate::canvas::{CanvasTextureHandle, CanvasImageHandle};
use vulkano::image::{ImmutableImage, AttachmentImage};
use std::sync::Arc;
use vulkano::format::Format;
use crate::canvas_shader::CanvasShader;
use vulkano::sampler::Sampler;
use vulkano::descriptor::DescriptorSet;
use vulkano::descriptor::descriptor_set::PersistentDescriptorSet;
#[derive(Clone)]
pub struct CanvasTexture {
pub(crate) handle: Arc<CanvasTextureHandle>,
pub(crate) buffer: Arc<ImmutableImage<Format>>,
pub(crate) name: String,
pub(crate) size: (u32, u32),
}
impl CanvasTexture {
pub fn get_descriptor_set(&self,
shader: Arc<CanvasShader>,
sampler: Arc<Sampler>) -> Box<dyn DescriptorSet + Send + Sync> {
let o: Box<dyn DescriptorSet + Send + Sync> = Box::new(
PersistentDescriptorSet::start(
shader.clone().get_pipeline().clone(), 0,
)
.add_sampled_image(self.buffer.clone(), sampler.clone()).unwrap()
.build().unwrap());
o
}
}
#[derive(Clone)]
pub struct CanvasImage {
pub(crate) handle: Arc<CanvasImageHandle>,
pub(crate) buffer: Arc<AttachmentImage>,
pub(crate) size: (u32, u32),
}
impl CanvasImage {
pub fn get_descriptor_set(&mut self, shader: Arc<CanvasShader>)
-> Box<dyn DescriptorSet + Send + Sync> {
let o: Box<dyn DescriptorSet + Send + Sync> = Box::new(
PersistentDescriptorSet::start(
shader.clone().get_pipeline().clone(), 0,
)
.add_image(self.buffer.clone()).unwrap()
.build().unwrap());
o
}
}

@ -1,7 +1,7 @@
use crate::vertex_2d::{ColoredVertex2D, Vertex2D};
use std::sync::Arc;
use std::collections::HashMap;
use crate::canvas::{Drawable, CanvasTextureHandle, CanvasImage, CanvasImageHandle};
use crate::canvas::{Drawable, CanvasTextureHandle, CanvasImageHandle};
pub struct CanvasFrame {
pub colored_drawables: Vec<ColoredVertex2D>,

@ -10,12 +10,13 @@ use vulkano::pipeline::shader::{GraphicsShaderType, ShaderModule, Specialization
use vulkano::swapchain::{Capabilities};
use crate::vertex_2d::{ColoredVertex2D, Vertex2D};
/*
CanvasShader holds the pipeline and render pass for the inputted shader source
*/
/// Typed wrapper for a u32 shader handle (index id)
#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct CanvasShaderHandle {
pub handle: u32
}
/// CanvasShader holds the pipeline and render pass for the input shader source
#[derive(Clone)]
pub struct CanvasShader {
@ -27,6 +28,8 @@ pub struct CanvasShader {
impl CanvasShader {
/// Takes the filename of a .vertex .fragment shader combo in resources/shaders/
/// Returns pathbuffer of that vertex and fragment shader
fn get_path(filename: String) -> (PathBuf, PathBuf) {
let project_root =
@ -47,10 +50,13 @@ impl CanvasShader {
(vertex_shader_path, fragment_shader_path)
}
/// Clone and returns the compiled graphics pipeline
pub fn get_pipeline(&self) -> Arc<dyn GraphicsPipelineAbstract + Sync + Send> {
self.graphics_pipeline.clone().unwrap()
}
/// Create a new `Colored` shader. Which just means that it uses ColoredVertex2D's
/// This will explode when the shader does not want to compile
pub fn new_colored(filename: String,
capabilities: Capabilities,
queue: Arc<Queue>,
@ -168,6 +174,8 @@ impl CanvasShader {
}
}
/// Create a new `Textured` shader. Which just means that it uses plain Vertex2D's
/// This will explode when the shader does not want to compile
pub fn new_textured(filename: String,
capabilities: Capabilities,
queue: Arc<Queue>,
@ -289,7 +297,7 @@ impl CanvasShader {
#[repr(C)]
#[derive(Default, Debug, Clone)]
// TODO: This needs to be duplicated and moved into their respective containers shaderkenrels copute
/// Specialization constants which can be passed to the shader. Pretty much placeholder ATM
struct ShaderSpecializationConstants {
first_constant: i32,
second_constant: u32,

@ -1,7 +1,7 @@
use std::ffi::CStr;
use vulkano::buffer::{CpuAccessibleBuffer, BufferUsage};
use std::sync::Arc;
use crate::canvas::{Drawable, CanvasState, CanvasImageHandle, CanvasImage, CanvasTextureHandle};
use crate::canvas::{Drawable, CanvasState, CanvasImageHandle, CanvasTextureHandle};
use vulkano::framebuffer::RenderPassAbstract;
use vulkano::pipeline::{GraphicsPipelineAbstract, ComputePipeline};
use vulkano::device::Device;
@ -104,7 +104,7 @@ impl CompuState {
let size = buffer.get_size();
command_buffer = command_buffer
.dispatch([size.0,size.1,1], p, d, ()).unwrap()
.dispatch([size.0/8,size.1/8,1], p, d, ()).unwrap()
}
// i = (Buffer, Image, Kernel)
@ -126,8 +126,10 @@ impl CompuState {
panic!("Buffer sizes not the same");
}
let size = buffer.get_size();
command_buffer = command_buffer
.dispatch([100,100,1], p, d, ()).unwrap()
.dispatch([size.0,size.1,1], p, d, ()).unwrap()
.copy_buffer_to_image(buffer.get_input_buffer(), image).unwrap();
}

@ -9,6 +9,7 @@ extern crate nalgebra as na;
extern crate rand;
extern crate sfml;
extern crate time;
extern crate hprof;
use sfml::system::*;
use vulkano::sync;
@ -27,23 +28,25 @@ use crate::compu_buffer::CompuBuffers;
use crate::util::load_raw;
use crate::canvas_frame::CanvasFrame;
mod util;
mod timer;
mod input;
mod vkprocessor;
mod vertex_2d;
mod vertex_3d;
mod sprite;
pub mod util;
pub mod timer;
pub mod input;
pub mod vkprocessor;
pub mod vertex_2d;
pub mod vertex_3d;
pub mod sprite;
mod canvas;
mod canvas_frame;
mod canvas_shader;
pub mod canvas;
pub mod canvas_frame;
pub mod canvas_shader;
pub mod canvas_buffer;
pub mod compu_state;
pub mod compu_frame;
pub mod compu_sprite;
pub mod compu_kernel;
pub mod compu_buffer;
mod compu_state;
mod compu_frame;
mod compu_sprite;
mod compu_kernel;
mod compu_buffer;
/*
@ -53,7 +56,13 @@ Canvas works, but I want to use CPU accessible buffer instead of immutable buffe
I think it would be faster if we reuse fewer oversized buffers than vis versa
*/
fn main() {
/// Main Entry
pub fn main() {
hprof::start_frame();
let q1 = hprof::enter("setup");
let instance = {
let extensions = vulkano_win::required_extensions();
@ -67,11 +76,16 @@ fn main() {
let mut window = surface.window();
let mut processor = vkprocessor::VkProcessor::new(&instance, &surface);
{
let g = hprof::enter("vulkan preload");
processor.create_swapchain(&surface);
processor.preload_kernels();
processor.preload_shaders();
processor.preload_textures();
}
let q2 = hprof::enter("Game Objects");
let mut timer = Timer::new();
let mut frame_future = Box::new(sync::now(processor.device.clone())) as Box<dyn GpuFuture>;
@ -84,10 +98,6 @@ fn main() {
let mut mouse_xy = Vector2i::new(0,0);
let sprite = Sprite::new_with_color((0.,0.), (0.1,0.1), (1.,0.,0.,1.));
let sprite2 = Sprite::new_with_color((-1.,-0.5), (0.1,0.1), (0.,1.,0.,1.));
@ -105,9 +115,14 @@ fn main() {
let sprite3 = Sprite::new_with_texture((0.3, 0.5), (0.1,0.1), handle.clone());
drop(q2);
drop(q1);
while let Some(p) = window.get_position() {
let l = hprof::enter("Loop");
let mut exit = false;
while let Some(p) = window.get_position() {
elapsed_time = timer.elap_time();
delta_time = elapsed_time - current_time;
current_time = elapsed_time;
@ -120,9 +135,7 @@ fn main() {
accumulator_time -= step_size;
}
println!("{}", delta_time);
let mut exit = false;
// println!("{}", delta_time);
events_loop.poll_events(|event| {
match event {
Event::WindowEvent { event: WindowEvent::CloseRequested, .. } =>
@ -133,7 +146,6 @@ fn main() {
processor.recreate_swapchain(&surface);
},
Event::DeviceEvent { event: DeviceEvent::Key(keyboard_input), .. } => {
match keyboard_input.virtual_keycode.unwrap() {
VirtualKeyCode::A => {
if keyboard_input.state == ElementState::Pressed {
@ -151,7 +163,7 @@ fn main() {
});
if exit {
return;
break;
}
let mut compu_frame = CompuFrame::new();
@ -162,14 +174,22 @@ fn main() {
canvas.draw(&sprite);
canvas.draw(&sprite2);
canvas.draw(&sprite3);
canvas.draw(&compu_sprite1);
(frame_future) = processor.run(&surface, frame_future,
//canvas.draw(&compu_sprite1);
{
let g = hprof::enter("Run");
processor.run(&surface,
//frame_future,
canvas,
compu_frame);
}
}
drop(l);
hprof::end_frame();
hprof::profiler().print_timing();
}

@ -1,22 +1,26 @@
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue};
use vulkano::instance::{Instance, PhysicalDevice};
use vulkano::sync::{GpuFuture, FlushError};
use vulkano::sync::{GpuFuture, FlushError, NowFuture};
use vulkano::sync::now;
use vulkano::sync;
use std::sync::Arc;
use vulkano::swapchain::{Swapchain, PresentMode, SurfaceTransform, Surface, SwapchainCreationError, AcquireError, Capabilities};
use vulkano::image::swapchain::SwapchainImage;
use winit::{Window};
use winit::Window;
use crate::compu_state::CompuState;
use vulkano::image::ImageUsage;
use crate::compu_frame::CompuFrame;
use crate::canvas::{CanvasState, CanvasTextureHandle, CanvasShaderHandle, CanvasImageHandle};
use crate::canvas::{CanvasState, CanvasTextureHandle, CanvasImageHandle};
use crate::canvas_frame::CanvasFrame;
use crate::compu_kernel::{CompuKernel, CompuKernelHandle};
use crate::compu_buffer::{CompuBuffers, CompuBufferHandle};
use std::time::Duration;
use crate::canvas_shader::CanvasShaderHandle;
/// VKProcessor holds the vulkan instance information, the swapchain, and the compute and canvas states
///
pub struct VkProcessor<'a> {
// Vulkan state fields
pub instance: Arc<Instance>,
pub physical: PhysicalDevice<'a>,
@ -39,7 +43,10 @@ pub struct VkProcessor<'a> {
impl<'a> VkProcessor<'a> {
/// Creates a new VkProcessor from an instance and surface
/// This includes the physical device, queues, compute and canvas state
pub fn new(instance: &'a Arc<Instance>, surface: &'a Arc<Surface<Window>>) -> VkProcessor<'a> {
let physical = PhysicalDevice::enumerate(instance).next().unwrap();
let queue_family = physical.queue_families().find(|&q| {
@ -75,6 +82,7 @@ impl<'a> VkProcessor<'a> {
}
}
/// Using the surface, we calculate the surface capabilities and create the swapchain and swapchain images
pub fn create_swapchain(&mut self, surface: &'a Arc<Surface<Window>>) {
let (mut swapchain, images) = {
let capabilities = surface.capabilities(self.physical).unwrap();
@ -103,14 +111,14 @@ impl<'a> VkProcessor<'a> {
&self.queue,
SurfaceTransform::Identity,
alpha,
PresentMode::Fifo, true, None).unwrap()
PresentMode::Immediate, true, None).unwrap()
};
self.swapchain = Some(swapchain);
self.swapchain_images = Some(images);
}
// On resizes we have to recreate the swapchain
/// On screen resizes, the swapchain and images must be recreated
pub fn recreate_swapchain(&mut self, surface: &'a Arc<Surface<Window>>) {
let dimensions = if let Some(dimensions) = surface.window().get_inner_size() {
let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into();
@ -131,20 +139,27 @@ impl<'a> VkProcessor<'a> {
self.swapchain_images = Some(new_images);
}
/// A hardcoded list of textures which can be preloaded from this function
pub fn preload_textures(&mut self) {
self.canvas.load_texture(String::from("funky-bird.jpg"));
self.canvas.load_texture(String::from("button.png"));
self.canvas.load_texture(String::from("background.jpg"));
self.canvas.load_texture(String::from("test2.png"));
}
/// A hardcoded list of kernels which can be preloaded from this function
pub fn preload_kernels(&mut self) {
self.compute_state.new_kernel(String::from("simple-homogenize.compute"), self.device.clone());
self.compute_state.new_kernel(String::from("simple-edge.compute"), self.device.clone());
}
pub fn preload_shaders(&mut self) {
/// A hardcoded list of shaders which can be proloaded from this function
pub fn preload_shaders(&mut self) {
self.canvas.load_shader(String::from("color-passthrough"), self.physical.clone(), self.capabilities.clone());
self.canvas.load_shader(String::from("simple_texture"), self.physical.clone(), self.capabilities.clone());
}
pub fn get_texture_handle(&self, texture_name: String) -> Option<Arc<CanvasTextureHandle>> {
self.canvas.get_texture_handle(texture_name)
}
@ -178,22 +193,19 @@ impl<'a> VkProcessor<'a> {
pub fn run(&mut self,
surface: &'a Arc<Surface<Window>>,
mut frame_future: Box<dyn GpuFuture>,
canvas_frame: CanvasFrame,
compute_frame: CompuFrame,
)
-> Box<dyn GpuFuture> {
) {
// take the canvas frame and create the vertex buffers
// TODO: This performs gpu buffer creation. Shouldn't be in hotpath
self.canvas.draw(canvas_frame);
{
let g = hprof::enter("Waiting at queue");
self.queue.wait();
}
let g = hprof::enter("Frame buffer, future, swapchain recreate");
let mut framebuffers =
self.canvas.window_size_dependent_setup(&self.swapchain_images.clone().unwrap().clone());
// The docs said to call this on each loop.
frame_future.cleanup_finished();
// Whenever the window resizes we need to recreate everything dependent on the window size.
// In this example that includes the swapchain, the framebuffers and the dynamic state viewport.
if self.swapchain_recreate_needed {
@ -205,49 +217,73 @@ impl<'a> VkProcessor<'a> {
// This function can block if no image is available. The parameter is an optional timeout
// after which the function call will return an error.
let (image_num, acquire_future) = match vulkano::swapchain::acquire_next_image(self.swapchain.clone().unwrap().clone(), None) {
let (image_num, acquire_future) =
match vulkano::swapchain::acquire_next_image(
self.swapchain.clone().unwrap().clone(),
None,
) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
self.swapchain_recreate_needed = true;
return Box::new(sync::now(self.device.clone())) as Box<_>;
return;
}
Err(err) => panic!("{:?}", err)
};
drop(g);
{
let g = hprof::enter("Canvas creates GPU buffers");
// take the canvas frame and create the vertex buffers
// TODO: This performs gpu buffer creation. Shouldn't be in hotpath??
self.canvas.draw(canvas_frame);
}
let mut command_buffer =
AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(), self.queue.family()).unwrap();
let g = hprof::enter("Push compute commands to command buffer");
// Add the compute commands
let mut command_buffer = self.compute_state.compute_commands(compute_frame, command_buffer, &self.canvas);
drop(g);
let g = hprof::enter("Push draw commands to command buffer");
// Add the draw commands
let mut command_buffer = self.canvas.draw_commands(command_buffer, framebuffers, image_num);
// And build
let command_buffer = command_buffer.build().unwrap();
drop(g);
// Wait on the previous frame, then execute the command buffer and present the image
let future = frame_future.join(acquire_future)
{
let g = hprof::enter("Joining on the framebuffer");
let mut future = sync::now(self.device.clone())
.join(acquire_future);
drop(g);
let g = hprof::enter("Running the kernel and waiting on the future");
let future = future
.then_execute(self.queue.clone(), command_buffer).unwrap()
.then_swapchain_present(self.queue.clone(), self.swapchain.clone().unwrap().clone(), image_num)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
(Box::new(future) as Box<_>)
future.wait(None).unwrap();
}
Err(FlushError::OutOfDate) => {
self.swapchain_recreate_needed = true;
(Box::new(sync::now(self.device.clone())) as Box<_>)
}
Err(e) => {
println!("{:?}", e);
(Box::new(sync::now(self.device.clone())) as Box<_>)
}
}
}
}
}

Loading…
Cancel
Save