[][src]Trait alga::general::AbstractLoop

pub trait AbstractLoop<O: Operator>: AbstractQuasigroup<O> + Identity<O> { }

A loop is a quasigroup with an unique identity element, e.

A set equipped with a closed binary operation possessing the divisibility property and a unique identity element.

Identity element

∃! e ∈ Self, ∀ a ∈ Self, ∃ r, l ∈ Self such that l ∘ a = a ∘ r = e.

The left inverse r and right inverse l are not required to be equal.

This property follows from

∀ a ∈ Self, ∃ e ∈ Self, such that e ∘ a = a ∘ e = a.

Implementations on Foreign Types

impl<N> AbstractLoop<Multiplicative> for Complex<N> where
    N: Num + Clone + ClosedNeg
[src]

impl<N> AbstractLoop<Additive> for Complex<N> where
    N: AbstractGroupAbelian<Additive>, 
[src]

impl AbstractLoop<Additive> for i8[src]

impl AbstractLoop<Additive> for i16[src]

impl AbstractLoop<Additive> for i32[src]

impl AbstractLoop<Additive> for i64[src]

impl AbstractLoop<Additive> for isize[src]

impl AbstractLoop<Additive> for f32[src]

impl AbstractLoop<Additive> for f64[src]

impl AbstractLoop<Multiplicative> for f32[src]

impl AbstractLoop<Multiplicative> for f64[src]

Loading content...

Implementors

impl<O: Operator> AbstractLoop<O> for Id<O>[src]

Loading content...