[][src]Struct nalgebra::Id

#[repr(C)]
pub struct Id<O = Multiplicative> where
    O: Operator
{ /* fields omitted */ }

The universal identity element wrt. a given operator, usually noted Id with a context-dependent subscript.

By default, it is the multiplicative identity element. It represents the degenerate set containing only the identity element of any group-like structure. It has no dimension known at compile-time. All its operations are no-ops.

Methods

impl<O> Id<O> where
    O: Operator
[src]

pub fn new() -> Id<O>[src]

Creates a new identity element.

Trait Implementations

impl<E> Transformation<E> for Id<Multiplicative> where
    E: EuclideanSpace
[src]

impl<E> Rotation<E> for Id<Multiplicative> where
    E: EuclideanSpace
[src]

impl<O> AbstractMonoid<O> for Id<O> where
    O: Operator
[src]

impl<E> Translation<E> for Id<Multiplicative> where
    E: EuclideanSpace
[src]

impl<O> Display for Id<O> where
    O: Operator
[src]

impl<E> Scaling<E> for Id<Multiplicative> where
    E: EuclideanSpace
[src]

impl<E> Isometry<E> for Id<Multiplicative> where
    E: EuclideanSpace
[src]

impl<O> TwoSidedInverse<O> for Id<O> where
    O: Operator
[src]

impl Add<Id<Additive>> for Id<Additive>[src]

type Output = Id<Additive>

The resulting type after applying the + operator.

impl Zero for Id<Additive>[src]

impl<O> Debug for Id<O> where
    O: Operator + Debug
[src]

impl<O> AbstractMagma<O> for Id<O> where
    O: Operator
[src]

impl<O> MeetSemilattice for Id<O> where
    O: Operator
[src]

impl AddAssign<Id<Additive>> for Id<Additive>[src]

impl<E> AffineTransformation<E> for Id<Multiplicative> where
    E: EuclideanSpace
[src]

type Rotation = Id<Multiplicative>

Type of the first rotation to be applied.

type NonUniformScaling = Id<Multiplicative>

Type of the non-uniform scaling to be applied.

type Translation = Id<Multiplicative>

The type of the pure translation part of this affine transformation.

impl<O, T> SubsetOf<T> for Id<O> where
    O: Operator,
    T: Identity<O> + PartialEq<T>, 
[src]

impl<O> AbstractGroupAbelian<O> for Id<O> where
    O: Operator
[src]

impl<O> AbsDiffEq<Id<O>> for Id<O> where
    O: Operator
[src]

type Epsilon = Id<O>

Used for specifying relative comparisons.

impl<O> RelativeEq<Id<O>> for Id<O> where
    O: Operator
[src]

impl<O> Clone for Id<O> where
    O: Operator
[src]

impl<E> DirectIsometry<E> for Id<Multiplicative> where
    E: EuclideanSpace
[src]

impl<O> Copy for Id<O> where
    O: Operator
[src]

impl<E> Similarity<E> for Id<Multiplicative> where
    E: EuclideanSpace
[src]

type Scaling = Id<Multiplicative>

The type of the pure (uniform) scaling part of this similarity transformation.

impl One for Id<Multiplicative>[src]

impl<O> Eq for Id<O> where
    O: Operator
[src]

impl<O> AbstractLoop<O> for Id<O> where
    O: Operator
[src]

impl<O> Identity<O> for Id<O> where
    O: Operator
[src]

impl<O> JoinSemilattice for Id<O> where
    O: Operator
[src]

impl<E> ProjectiveTransformation<E> for Id<Multiplicative> where
    E: EuclideanSpace
[src]

impl<O> PartialEq<Id<O>> for Id<O> where
    O: Operator
[src]

impl<O> AbstractSemigroup<O> for Id<O> where
    O: Operator
[src]

impl<E> OrthogonalTransformation<E> for Id<Multiplicative> where
    E: EuclideanSpace
[src]

impl Mul<Id<Multiplicative>> for Id<Multiplicative>[src]

type Output = Id<Multiplicative>

The resulting type after applying the * operator.

impl<O> PartialOrd<Id<O>> for Id<O> where
    O: Operator
[src]

impl DivAssign<Id<Multiplicative>> for Id<Multiplicative>[src]

impl<O> AbstractGroup<O> for Id<O> where
    O: Operator
[src]

impl MulAssign<Id<Multiplicative>> for Id<Multiplicative>[src]

impl Div<Id<Multiplicative>> for Id<Multiplicative>[src]

type Output = Id<Multiplicative>

The resulting type after applying the / operator.

impl<O> UlpsEq<Id<O>> for Id<O> where
    O: Operator
[src]

impl<O> AbstractQuasigroup<O> for Id<O> where
    O: Operator
[src]

impl<O> Lattice for Id<O> where
    O: Operator
[src]

Auto Trait Implementations

impl<O> Send for Id<O> where
    O: Send

impl<O> Unpin for Id<O> where
    O: Unpin

impl<O> Sync for Id<O> where
    O: Sync

impl<O> UnwindSafe for Id<O> where
    O: UnwindSafe

impl<O> RefUnwindSafe for Id<O> where
    O: RefUnwindSafe

Blanket Implementations

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> From<T> for T[src]

impl<T> ToString for T where
    T: Display + ?Sized
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Same<T> for T[src]

type Output = T

Should always be Self

impl<SS, SP> SupersetOf<SS> for SP where
    SS: SubsetOf<SP>, 
[src]

impl<T, Right> ClosedAdd<Right> for T where
    T: Add<Right, Output = T> + AddAssign<Right>, 
[src]

impl<T, Right> ClosedMul<Right> for T where
    T: Mul<Right, Output = T> + MulAssign<Right>, 
[src]

impl<T, Right> ClosedDiv<Right> for T where
    T: Div<Right, Output = T> + DivAssign<Right>, 
[src]

impl<T> AdditiveMagma for T where
    T: AbstractMagma<Additive>, 
[src]

impl<T> AdditiveSemigroup for T where
    T: AbstractSemigroup<Additive> + ClosedAdd<T> + AdditiveMagma
[src]

impl<T> AdditiveMonoid for T where
    T: AbstractMonoid<Additive> + AdditiveSemigroup + Zero
[src]

impl<T> MultiplicativeMagma for T where
    T: AbstractMagma<Multiplicative>, 
[src]

impl<T> MultiplicativeQuasigroup for T where
    T: AbstractQuasigroup<Multiplicative> + ClosedDiv<T> + MultiplicativeMagma
[src]

impl<T> MultiplicativeLoop for T where
    T: AbstractLoop<Multiplicative> + MultiplicativeQuasigroup + One
[src]

impl<T> MultiplicativeSemigroup for T where
    T: AbstractSemigroup<Multiplicative> + ClosedMul<T> + MultiplicativeMagma
[src]

impl<T> MultiplicativeMonoid for T where
    T: AbstractMonoid<Multiplicative> + MultiplicativeSemigroup + One
[src]

impl<T> MultiplicativeGroup for T where
    T: AbstractGroup<Multiplicative> + MultiplicativeLoop + MultiplicativeMonoid
[src]

impl<T> MultiplicativeGroupAbelian for T where
    T: AbstractGroupAbelian<Multiplicative> + MultiplicativeGroup
[src]

impl<R, E> ProjectiveTransformation<E> for R where
    E: EuclideanSpace<RealField = R>,
    R: RealField,
    <E as EuclideanSpace>::Coordinates: ClosedMul<R>,
    <E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
    <E as EuclideanSpace>::Coordinates: ClosedNeg
[src]

impl<R, E> Transformation<E> for R where
    E: EuclideanSpace<RealField = R>,
    R: RealField,
    <E as EuclideanSpace>::Coordinates: ClosedMul<R>,
    <E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
    <E as EuclideanSpace>::Coordinates: ClosedNeg
[src]

impl<R, E> Similarity<E> for R where
    E: EuclideanSpace<RealField = R>,
    R: RealField + SubsetOf<R>,
    <E as EuclideanSpace>::Coordinates: ClosedMul<R>,
    <E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
    <E as EuclideanSpace>::Coordinates: ClosedNeg
[src]

type Scaling = R

The type of the pure (uniform) scaling part of this similarity transformation.

impl<R, E> AffineTransformation<E> for R where
    E: EuclideanSpace<RealField = R>,
    R: RealField,
    <E as EuclideanSpace>::Coordinates: ClosedMul<R>,
    <E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
    <E as EuclideanSpace>::Coordinates: ClosedNeg
[src]

type Rotation = Id<Multiplicative>

Type of the first rotation to be applied.

type NonUniformScaling = R

Type of the non-uniform scaling to be applied.

type Translation = Id<Multiplicative>

The type of the pure translation part of this affine transformation.

impl<R, E> Scaling<E> for R where
    E: EuclideanSpace<RealField = R>,
    R: RealField + SubsetOf<R>,
    <E as EuclideanSpace>::Coordinates: ClosedMul<R>,
    <E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
    <E as EuclideanSpace>::Coordinates: ClosedNeg
[src]