[−][src]Trait nalgebra::base::Norm
A trait for abstract matrix norms.
This may be moved to the alga crate in the future.
Required methods
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::RealField where
R: Dim,
C: Dim,
S: Storage<N, R, C>,
R: Dim,
C: Dim,
S: Storage<N, R, C>,
Apply this norm to the given matrix.
fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<N, R1, C1, S1>,
m2: &Matrix<N, R2, C2, S2>
) -> N::RealField where
R1: Dim,
C1: Dim,
S1: Storage<N, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
&self,
m1: &Matrix<N, R1, C1, S1>,
m2: &Matrix<N, R2, C2, S2>
) -> N::RealField where
R1: Dim,
C1: Dim,
S1: Storage<N, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
Use the metric induced by this norm to compute the metric distance between the two given matrices.
Implementors
impl<N: ComplexField> Norm<N> for EuclideanNorm
[src]
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::RealField where
R: Dim,
C: Dim,
S: Storage<N, R, C>,
[src]
R: Dim,
C: Dim,
S: Storage<N, R, C>,
fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<N, R1, C1, S1>,
m2: &Matrix<N, R2, C2, S2>
) -> N::RealField where
R1: Dim,
C1: Dim,
S1: Storage<N, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
[src]
&self,
m1: &Matrix<N, R1, C1, S1>,
m2: &Matrix<N, R2, C2, S2>
) -> N::RealField where
R1: Dim,
C1: Dim,
S1: Storage<N, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
impl<N: ComplexField> Norm<N> for LpNorm
[src]
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::RealField where
R: Dim,
C: Dim,
S: Storage<N, R, C>,
[src]
R: Dim,
C: Dim,
S: Storage<N, R, C>,
fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<N, R1, C1, S1>,
m2: &Matrix<N, R2, C2, S2>
) -> N::RealField where
R1: Dim,
C1: Dim,
S1: Storage<N, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
[src]
&self,
m1: &Matrix<N, R1, C1, S1>,
m2: &Matrix<N, R2, C2, S2>
) -> N::RealField where
R1: Dim,
C1: Dim,
S1: Storage<N, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
impl<N: ComplexField> Norm<N> for UniformNorm
[src]
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::RealField where
R: Dim,
C: Dim,
S: Storage<N, R, C>,
[src]
R: Dim,
C: Dim,
S: Storage<N, R, C>,
fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<N, R1, C1, S1>,
m2: &Matrix<N, R2, C2, S2>
) -> N::RealField where
R1: Dim,
C1: Dim,
S1: Storage<N, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
[src]
&self,
m1: &Matrix<N, R1, C1, S1>,
m2: &Matrix<N, R2, C2, S2>
) -> N::RealField where
R1: Dim,
C1: Dim,
S1: Storage<N, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,