[][src]Struct nalgebra::linalg::Bidiagonal

pub struct Bidiagonal<N: ComplexField, R: DimMin<C>, C: Dim> where
    DimMinimum<R, C>: DimSub<U1>,
    DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>, 
{ /* fields omitted */ }

The bidiagonalization of a general matrix.

Methods

impl<N: ComplexField, R: DimMin<C>, C: Dim> Bidiagonal<N, R, C> where
    DimMinimum<R, C>: DimSub<U1>,
    DefaultAllocator: Allocator<N, R, C> + Allocator<N, C> + Allocator<N, R> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>, 
[src]

pub fn new(matrix: MatrixMN<N, R, C>) -> Self[src]

Computes the Bidiagonal decomposition using householder reflections.

pub fn is_upper_diagonal(&self) -> bool[src]

Indicates whether this decomposition contains an upper-diagonal matrix.

pub fn unpack(
    self
) -> (MatrixMN<N, R, DimMinimum<R, C>>, MatrixN<N, DimMinimum<R, C>>, MatrixMN<N, DimMinimum<R, C>, C>) where
    DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>, C>, 
[src]

Unpacks this decomposition into its three matrix factors (U, D, V^t).

The decomposed matrix M is equal to U * D * V^t.

pub fn d(&self) -> MatrixN<N, DimMinimum<R, C>> where
    DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>>, 
[src]

Retrieves the upper trapezoidal submatrix R of this decomposition.

pub fn u(&self) -> MatrixMN<N, R, DimMinimum<R, C>> where
    DefaultAllocator: Allocator<N, R, DimMinimum<R, C>>, 
[src]

Computes the orthogonal matrix U of this U * D * V decomposition.

pub fn v_t(&self) -> MatrixMN<N, DimMinimum<R, C>, C> where
    DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>, 
[src]

Computes the orthogonal matrix V_t of this U * D * V_t decomposition.

pub fn diagonal(&self) -> VectorN<N::RealField, DimMinimum<R, C>> where
    DefaultAllocator: Allocator<N::RealField, DimMinimum<R, C>>, 
[src]

The diagonal part of this decomposed matrix.

pub fn off_diagonal(
    &self
) -> VectorN<N::RealField, DimDiff<DimMinimum<R, C>, U1>> where
    DefaultAllocator: Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>>, 
[src]

The off-diagonal part of this decomposed matrix.

Trait Implementations

impl<N: Clone + ComplexField, R: Clone + DimMin<C>, C: Clone + Dim> Clone for Bidiagonal<N, R, C> where
    DimMinimum<R, C>: DimSub<U1>,
    DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>, 
[src]

impl<N: ComplexField, R: DimMin<C>, C: Dim> Copy for Bidiagonal<N, R, C> where
    DimMinimum<R, C>: DimSub<U1>,
    DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
    MatrixMN<N, R, C>: Copy,
    VectorN<N, DimMinimum<R, C>>: Copy,
    VectorN<N, DimDiff<DimMinimum<R, C>, U1>>: Copy
[src]

impl<N: Debug + ComplexField, R: Debug + DimMin<C>, C: Debug + Dim> Debug for Bidiagonal<N, R, C> where
    DimMinimum<R, C>: DimSub<U1>,
    DefaultAllocator: Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>>, 
[src]

Auto Trait Implementations

impl<N, R, C> !Send for Bidiagonal<N, R, C>

impl<N, R, C> !Unpin for Bidiagonal<N, R, C>

impl<N, R, C> !Sync for Bidiagonal<N, R, C>

impl<N, R, C> !UnwindSafe for Bidiagonal<N, R, C>

impl<N, R, C> !RefUnwindSafe for Bidiagonal<N, R, C>

Blanket Implementations

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> From<T> for T[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Same<T> for T[src]

type Output = T

Should always be Self

impl<SS, SP> SupersetOf<SS> for SP where
    SS: SubsetOf<SP>, 
[src]