[][src]Struct nalgebra::linalg::SymmetricTridiagonal

pub struct SymmetricTridiagonal<N: ComplexField, D: DimSub<U1>> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>, 
{ /* fields omitted */ }

Tridiagonalization of a symmetric matrix.

Methods

impl<N: ComplexField, D: DimSub<U1>> SymmetricTridiagonal<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>, 
[src]

pub fn new(m: MatrixN<N, D>) -> Self[src]

Computes the tridiagonalization of the symmetric matrix m.

Only the lower-triangular part (including the diagonal) of m is read.

pub fn unpack(
    self
) -> (MatrixN<N, D>, VectorN<N::RealField, D>, VectorN<N::RealField, DimDiff<D, U1>>) where
    DefaultAllocator: Allocator<N::RealField, D> + Allocator<N::RealField, DimDiff<D, U1>>, 
[src]

Retrieve the orthogonal transformation, diagonal, and off diagonal elements of this decomposition.

pub fn unpack_tridiagonal(
    self
) -> (VectorN<N::RealField, D>, VectorN<N::RealField, DimDiff<D, U1>>) where
    DefaultAllocator: Allocator<N::RealField, D> + Allocator<N::RealField, DimDiff<D, U1>>, 
[src]

Retrieve the diagonal, and off diagonal elements of this decomposition.

pub fn diagonal(&self) -> VectorN<N::RealField, D> where
    DefaultAllocator: Allocator<N::RealField, D>, 
[src]

The diagonal components of this decomposition.

pub fn off_diagonal(&self) -> VectorN<N::RealField, DimDiff<D, U1>> where
    DefaultAllocator: Allocator<N::RealField, DimDiff<D, U1>>, 
[src]

The off-diagonal components of this decomposition.

pub fn q(&self) -> MatrixN<N, D>[src]

Computes the orthogonal matrix Q of this decomposition.

pub fn recompose(self) -> MatrixN<N, D>[src]

Recomputes the original symmetric matrix.

Trait Implementations

impl<N: Clone + ComplexField, D: Clone + DimSub<U1>> Clone for SymmetricTridiagonal<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>, 
[src]

impl<N: ComplexField, D: DimSub<U1>> Copy for SymmetricTridiagonal<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>,
    MatrixN<N, D>: Copy,
    VectorN<N, DimDiff<D, U1>>: Copy
[src]

impl<N: Debug + ComplexField, D: Debug + DimSub<U1>> Debug for SymmetricTridiagonal<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimDiff<D, U1>>, 
[src]

Auto Trait Implementations

impl<N, D> !Send for SymmetricTridiagonal<N, D>

impl<N, D> !Unpin for SymmetricTridiagonal<N, D>

impl<N, D> !Sync for SymmetricTridiagonal<N, D>

impl<N, D> !UnwindSafe for SymmetricTridiagonal<N, D>

impl<N, D> !RefUnwindSafe for SymmetricTridiagonal<N, D>

Blanket Implementations

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> From<T> for T[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Same<T> for T[src]

type Output = T

Should always be Self

impl<SS, SP> SupersetOf<SS> for SP where
    SS: SubsetOf<SP>, 
[src]