You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

250 lines
7.2 KiB

#include <CL/cl.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <string>
#include <fstream>
#include <random>
#include <ctime>
#include <SFML/Graphics.hpp>
#define SUCCESS 0
#define FAILURE 1
using namespace std;
/* convert the kernel file into a string */
int convertToString(const char *filename, std::string& s)
{
size_t size;
char* str;
std::fstream f(filename, (std::fstream::in | std::fstream::binary));
if(f.is_open())
{
size_t fileSize;
f.seekg(0, std::fstream::end);
size = fileSize = (size_t)f.tellg();
f.seekg(0, std::fstream::beg);
str = new char[size+1];
if(!str)
{
f.close();
return 0;
}
f.read(str, fileSize);
f.close();
str[size] = '\0';
s = str;
delete[] str;
return 0;
}
cout<<"Error: failed to open file\n:"<<filename<<endl;
return FAILURE;
}
int main(int argc, char* argv[])
{
// 1000 x 1000 grid
std::mt19937 rng(time(NULL));
std::uniform_int_distribution<int> rgen(0, 4); // 25% chance
char* grid = new char[1000 * 1000 * 2];
for (int i = 0; i < 1000 * 1000 * 2; i += 2) {
if (rgen(rng) == 1) {
grid[i] = 1;
grid[i + 1] = 1;
}
else {
grid[i] = 0;
grid[i + 1] = 0;
}
}
/*Step1: Getting platforms and choose an available one.*/
cl_uint numPlatforms; //the NO. of platforms
cl_platform_id platform = NULL; //the chosen platform
cl_int status = clGetPlatformIDs(0, NULL, &numPlatforms);
if (status != CL_SUCCESS)
{
cout << "Error: Getting platforms!" << endl;
return FAILURE;
}
/*For clarity, choose the first available platform. */
if(numPlatforms > 0)
{
cl_platform_id* platforms = (cl_platform_id* )malloc(numPlatforms* sizeof(cl_platform_id));
status = clGetPlatformIDs(numPlatforms, platforms, NULL);
platform = platforms[0];
free(platforms);
}
/*Step 2:Query the platform and choose the first GPU device if has one.Otherwise use the CPU as device.*/
cl_uint numDevices = 0;
cl_device_id *devices;
status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 0, NULL, &numDevices);
if (numDevices == 0) //no GPU available.
{
cout << "No GPU device available." << endl;
cout << "Choose CPU as default device." << endl;
status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_CPU, 0, NULL, &numDevices);
devices = (cl_device_id*)malloc(numDevices * sizeof(cl_device_id));
status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_CPU, numDevices, devices, NULL);
}
else
{
devices = (cl_device_id*)malloc(numDevices * sizeof(cl_device_id));
status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, numDevices, devices, NULL);
}
/*Step 3: Create context.*/
cl_context context = clCreateContext(NULL,1, devices,NULL,NULL,NULL);
/*Step 4: Creating command queue associate with the context.*/
cl_command_queue commandQueue = clCreateCommandQueue(context, devices[0], 0, NULL);
/*Step 5: Create program object */
const char *filename = "HelloWorld_Kernel.cl";
string sourceStr;
status = convertToString(filename, sourceStr);
const char *source = sourceStr.c_str();
size_t sourceSize[] = {strlen(source)};
cl_program program = clCreateProgramWithSource(context, 1, &source, sourceSize, NULL);
/*Step 6: Build program. */
status=clBuildProgram(program, 1,devices,NULL,NULL,NULL);
/*Step 7: Initial input,output for the host and create memory objects for the kernel*/
const char* input = "GdkknVnqkc";
size_t strlength = strlen(input);
cout << "input string:" << endl;
cout << input << endl;
char *output = (char*) malloc(strlength + 1);
cl_mem inputBuffer = clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, (strlength + 1) * sizeof(char),(void *) input, NULL);
cl_mem outputBuffer = clCreateBuffer(context, CL_MEM_WRITE_ONLY , (strlength + 1) * sizeof(char), NULL, NULL);
/*Step 8: Create kernel object */
cl_kernel kernel = clCreateKernel(program,"helloworld", NULL);
/*Step 9: Sets Kernel arguments.*/
status = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&inputBuffer);
status = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&outputBuffer);
// ======================================= START SFML ==========================================================
// Spites for drawing, probably where the biggest slowdown is
sf::RectangleShape live_node;
live_node.setFillColor(sf::Color(145, 181, 207));
live_node.setSize(sf::Vector2f(WINDOW_X / Node::x_bound, WINDOW_Y / Node::y_bound));
// Init window, and loop data
sf::RenderWindow window(sf::VideoMode(WINDOW_X, WINDOW_Y), "Classic Games");
float step_size = 0.0005f;
double frame_time = 0.0, elapsed_time = 0.0, delta_time = 0.0, accumulator_time = 0.0, current_time = 0.0;
int frame_count = 0;
std::stack<std::thread> thread_stack;
while (window.isOpen()) {
sf::Event event;
while (window.pollEvent(event)) {
if (event.type == sf::Event::Closed)
window.close();
}
// Time keeping
elapsed_time = elap_time();
delta_time = elapsed_time - current_time;
current_time = elapsed_time;
if (delta_time > 0.02f)
delta_time = 0.02f;
accumulator_time += delta_time;
while ((accumulator_time - step_size) >= step_size) {
accumulator_time -= step_size;
// Do nothing, FPS tied update()
}
// Implicit dead node color
window.clear(sf::Color(49, 68, 72));
for (int i = 0; i < 12; i++) {
thread_stack.emplace(updateRange, &node_vec, (node_vec.size() / 12)* i, (node_vec.size() / 12)* (i + 1));
}
while (!thread_stack.empty()) {
thread_stack.top().join();
thread_stack.pop();
}
//for (int i = 0; i < node_vec.size(); i++) {
// node_vec.at(i).Update(&node_vec);
//}
for (int i = 0; i < node_vec.size(); i++) {
node_vec[i].ShiftState();
}
for (int i = 0; i < node_vec.size(); i++) {
if (node_vec.at(i).CurrentState() == true) {
live_node.setPosition((i % Node::x_bound) * live_node.getGlobalBounds().width, (i / Node::x_bound) * live_node.getGlobalBounds().height);
window.draw(live_node);
}
else {
//dead_node.setPosition(i % Node::x_bound * dead_node.getGlobalBounds().width, i / Node::x_bound * dead_node.getGlobalBounds().height);
//window.draw(live_node);
}
}
frame_count++;
window.display();
// ======================================= END SFML ==========================================================
/*Step 10: Running the kernel.*/
size_t global_work_size[1] = {strlength};
status = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, global_work_size, NULL, 0, NULL, NULL);
/*Step 11: Read the cout put back to host memory.*/
status = clEnqueueReadBuffer(commandQueue, outputBuffer, CL_TRUE, 0, strlength * sizeof(char), output, 0, NULL, NULL);
output[strlength] = '\0'; //Add the terminal character to the end of output.
cout << "\noutput string:" << endl;
cout << output << endl;
/*Step 12: Clean the resources.*/
status = clReleaseKernel(kernel); //Release kernel.
status = clReleaseProgram(program); //Release the program object.
status = clReleaseMemObject(inputBuffer); //Release mem object.
status = clReleaseMemObject(outputBuffer);
status = clReleaseCommandQueue(commandQueue); //Release Command queue.
status = clReleaseContext(context); //Release context.
if (output != NULL)
{
free(output);
output = NULL;
}
if (devices != NULL)
{
free(devices);
devices = NULL;
}
std::cout<<"Passed!\n";
return SUCCESS;
}