It appears that the new generation algorithm works well. The tree structure is intact and the relative pointers look correct. I'll write a validator when I get a chance

master
MitchellHansen 8 years ago
parent b82d543479
commit 04842dd597

@ -24,8 +24,6 @@ public:
Map(uint32_t dimensions); Map(uint32_t dimensions);
void dump_logs();
void setVoxel(sf::Vector3i position, int val); void setVoxel(sf::Vector3i position, int val);
bool getVoxelFromOctree(sf::Vector3i position); bool getVoxelFromOctree(sf::Vector3i position);
@ -44,9 +42,6 @@ private:
void generate_octree(unsigned int dimensions); void generate_octree(unsigned int dimensions);
// Generate children is the main recursive function
uint64_t generate_children(sf::Vector3i pos, int dim);
char* voxel_data; char* voxel_data;
}; };

@ -31,23 +31,23 @@ public:
void Generate(char* data, sf::Vector3i dimensions); void Generate(char* data, sf::Vector3i dimensions);
void Load(std::string octree_file_name); void Load(std::string octree_file_name);
uint64_t *trunk_buffer = new uint64_t[buffer_size]{0}; uint64_t *trunk_buffer;
uint64_t trunk_buffer_position = buffer_size; uint64_t trunk_buffer_position = buffer_size;
uint64_t *descriptor_buffer = new uint64_t[buffer_size]{0}; uint64_t *descriptor_buffer;
uint64_t descriptor_buffer_position = buffer_size; uint64_t descriptor_buffer_position = buffer_size;
uint32_t *attachment_lookup = new uint32_t[buffer_size]{0}; uint32_t *attachment_lookup;
uint64_t attachment_lookup_position = buffer_size; uint64_t attachment_lookup_position = buffer_size;
uint64_t *attachment_buffer = new uint64_t[buffer_size]{0}; uint64_t *attachment_buffer;
uint64_t attachment_buffer_position = buffer_size; uint64_t attachment_buffer_position = buffer_size;
unsigned int trunk_cutoff = 3; unsigned int trunk_cutoff = 3;
uint64_t root_index = 0; uint64_t root_index = 0;
int page_header_counter = 0x8000; int page_header_counter = 0x8000;
uint64_t current_info_section_position = buffer_size - 50; uint64_t current_info_section_position = ((uint64_t)0)-1;
uint64_t stack_pos = 0x8000; uint64_t stack_pos = 0x8000;
uint64_t global_pos = buffer_size - 50; uint64_t global_pos = buffer_size - 50;
@ -68,8 +68,8 @@ private:
sf::Vector3i pos, // position of this generation node sf::Vector3i pos, // position of this generation node
unsigned int voxel_scale // the voxel scale of this node unsigned int voxel_scale // the voxel scale of this node
); );
static char get1DIndexedVoxel(char* data, sf::Vector3i dimensions, sf::Vector3i position); char get1DIndexedVoxel(char* data, sf::Vector3i dimensions, sf::Vector3i position);
std::vector<uint64_t> anchor_stack; std::vector<uint64_t> anchor_stack;
unsigned int octree_voxel_dimension = 32; unsigned int octree_voxel_dimension = 32;

@ -151,7 +151,7 @@ inline void PrettyPrintUINT64(uint64_t i, std::stringstream* ss) {
*ss << "[" << std::bitset<1>(i >> 15) << "]"; *ss << "[" << std::bitset<1>(i >> 15) << "]";
*ss << "[" << std::bitset<8>(i >> 16) << "]"; *ss << "[" << std::bitset<8>(i >> 16) << "]";
*ss << "[" << std::bitset<8>(i >> 24) << "]"; *ss << "[" << std::bitset<8>(i >> 24) << "]";
*ss << "[" << std::bitset<32>(i >> 32) << "]"; *ss << "[" << std::bitset<32>(i >> 32) << "]\n";
} }
inline void PrettyPrintUINT64(uint64_t i) { inline void PrettyPrintUINT64(uint64_t i) {

@ -93,7 +93,6 @@ int main() {
// ============================= // =============================
Map _map(32); Map _map(32);
//_map.test(); //_map.test();
_map.dump_logs();
std::cin.get(); std::cin.get();
return 0; return 0;
// ============================= // =============================

@ -17,100 +17,9 @@ Map::Map(uint32_t dimensions) {
generate_octree(dimensions); generate_octree(dimensions);
} }
void Map::dump_logs() {
octree.print_block(0);
}
uint64_t Map::generate_children(sf::Vector3i pos, int voxel_scale) {
// The 8 subvoxel coords starting from the 1th direction, the direction of the origin of the 3d grid
// XY, Z++, XY
std::vector<sf::Vector3i> v = {
sf::Vector3i(pos.x , pos.y , pos.z),
sf::Vector3i(pos.x + voxel_scale, pos.y , pos.z),
sf::Vector3i(pos.x , pos.y + voxel_scale, pos.z),
sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z),
sf::Vector3i(pos.x , pos.y , pos.z + voxel_scale),
sf::Vector3i(pos.x + voxel_scale, pos.y , pos.z + voxel_scale),
sf::Vector3i(pos.x , pos.y + voxel_scale, pos.z + voxel_scale),
sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z + voxel_scale)
};
// If we hit the 1th voxel scale then we need to query the 3D grid
// and get the voxel at that position. I assume in the future when I
// want to do chunking / loading of raw data I can edit the voxel access
if (voxel_scale == 1) {
uint64_t child_descriptor = 0;
// Setting the individual valid mask bits
// These don't bound check, should they?
for (int i = 0; i < v.size(); i++) {
if (getVoxel(v.at(i)))
SetBit(i + 16, &child_descriptor);
}
// We are querying leafs, so we need to fill the leaf mask
child_descriptor |= 0xFF000000;
// The CP will be left blank, contour mask and ptr will need to
// be added here later
return child_descriptor;
}
// Init a blank child descriptor for this node
uint64_t child_descriptor = 0;
std::vector<uint64_t> descriptor_array;
std::vector<uint64_t> index_array;
// Generate down the recursion, returning the descriptor of the current node
for (int i = 0; i < v.size(); i++) {
uint64_t child = 0;
// Get the child descriptor from the i'th to 8th subvoxel
child = generate_children(v.at(i), voxel_scale / 2);
// =========== Debug ===========
PrettyPrintUINT64(child, &output_stream);
output_stream << " " << voxel_scale << " " << counter++ << std::endl;
// =============================
// If the child is a leaf (contiguous) of non-valid values
if (IsLeaf(child) && !CheckLeafSign(child)) {
// Leave the valid mask 0, set leaf mask to 1
SetBit(i + 16 + 8, &child_descriptor);
}
// If the child is valid and not a leaf
else {
// Set the valid mask, and add it to the descriptor array
SetBit(i + 16, &child_descriptor);
descriptor_array.push_back(child);
}
}
// Any free space between the child descriptors must be added here in order to
// interlace them and allow the memory handler to work correctly.
// Copy the children to the stack and set the child_descriptors pointer
// to the correct value
child_descriptor |= octree.copy_to_stack(descriptor_array, voxel_scale);
// Free space may also be allocated here as well
// Return the node up the stack
return child_descriptor;
}
void Map::generate_octree(unsigned int dimensions) { void Map::generate_octree(unsigned int dimensions) {
octree.Generate(voxel_data, sf::Vector3i(dimensions, dimensions, dimensions));
} }

@ -2,11 +2,12 @@
Octree::Octree() { Octree::Octree() {
// initialize the first stack block // initialize the the buffers to 0's
trunk_buffer = new uint64_t[buffer_size]();
descriptor_buffer = new uint64_t[buffer_size]();
attachment_lookup = new uint32_t[buffer_size]();
attachment_buffer = new uint64_t[buffer_size]();
for (int i = 0; i < 0x8000; i++) {
descriptor_buffer[i] = 0;
}
} }
@ -30,55 +31,21 @@ void Octree::Generate(char* data, sf::Vector3i dimensions) {
stack_pos -= 1; stack_pos -= 1;
} }
memcpy(&descriptor_buffer[stack_pos + global_pos], &std::get<0>(root_node), 1 * sizeof(uint64_t)); memcpy(&descriptor_buffer[descriptor_buffer_position], &std::get<0>(root_node), sizeof(uint64_t));
descriptor_buffer_position--;
// ======================================== // ========================================
DumpLog(&output_stream, "raw_output.txt"); DumpLog(&output_stream, "raw_output.txt");
} output_stream.str("");
// Copy to stack enables the hybrid depth-breadth first tree by taking
// a list of valid non-leaf child descriptors contained under a common parent.
// It takes the list of children, and the current level in the voxel hierarchy.
// It returns the index to the first element of the
// This is all fine and dandy, but we have the problem where we need to assign for (int i = 0; i < buffer_size; i++) {
// relative pointers to objects so we need to keep track of where their children are PrettyPrintUINT64(descriptor_buffer[i], &output_stream);
// being assigned.
uint64_t Octree::copy_to_stack(std::vector<uint64_t> children, unsigned int voxel_scale) {
// Check for the 15 bit boundry
if (stack_pos - children.size() > stack_pos) {
global_pos = stack_pos;
stack_pos = 0x8000;
}
else {
stack_pos -= children.size();
} }
// Copy to stack needs to keep track of an "anchor_stack" which will hopefully facilitate DumpLog(&output_stream, "raw_data.txt");
// relative pointer generation for items being copied to the stack
// We need to return the relative pointer to the child node list
// 16 bits, one far bit, one sign bit? 14 bits == +- 16384
// Worth halving the ptr reach to enable backwards ptrs?
// could increase packability allowing far ptrs and attachments to come before or after
//stack_pos -= children.size();
memcpy(&descriptor_buffer[stack_pos + global_pos], children.data(), children.size() * sizeof(uint64_t));
// Return the bitmask encoding the index of that value
// If we tripped the far bit, allocate a far index to the stack and place
// it at the bottom of the child_descriptor node level array
// And then shift the far bit to 1
// If not, shift the index to its correct place
return stack_pos;
} }
bool Octree::get_voxel(sf::Vector3i position) { bool Octree::get_voxel(sf::Vector3i position) {
@ -291,11 +258,12 @@ std::tuple<uint64_t, uint64_t> Octree::GenerationRecursion(char* data, sf::Vecto
uint64_t far_pointer_block_position = descriptor_buffer_position; uint64_t far_pointer_block_position = descriptor_buffer_position;
// Count the far pointers we need to allocate // Count the far pointers we need to allocate
for (int i = descriptor_position_array.size() - 1; i >= 0; i--) { for (int i = 0; i < descriptor_position_array.size(); i++) {
// this is not the actual relative distance write, so we pessimistically guess that we will have // this is not the actual relative distance write, so we pessimistically guess that we will have
// the worst relative distance via the insertion size // the worst relative distance via the insertion size
uint64_t relative_distance = std::get<1>(descriptor_position_array.at(i)) - (descriptor_buffer_position - worst_case_insertion_size);
int relative_distance = std::get<1>(descriptor_position_array.at(i)) - (descriptor_buffer_position - worst_case_insertion_size);
// check to see if we tripped the far pointer // check to see if we tripped the far pointer
if (relative_distance > 0x8000) { if (relative_distance > 0x8000) {
@ -303,16 +271,17 @@ std::tuple<uint64_t, uint64_t> Octree::GenerationRecursion(char* data, sf::Vecto
// This is writing the ABSOLUTE POSITION for far pointers, is this what I want? // This is writing the ABSOLUTE POSITION for far pointers, is this what I want?
memcpy(&descriptor_buffer[descriptor_buffer_position], &std::get<1>(descriptor_position_array.at(i)), sizeof(uint64_t)); memcpy(&descriptor_buffer[descriptor_buffer_position], &std::get<1>(descriptor_position_array.at(i)), sizeof(uint64_t));
descriptor_buffer_position--; descriptor_buffer_position--;
page_header_counter--;
far_pointer_count++; far_pointer_count++;
} }
} }
// We gotta go backwards as memcpy of a vector can be emulated by starting from the rear // We gotta go backwards as memcpy of a vector can be emulated by starting from the rear
for (int i = descriptor_position_array.size() - 1; i >= 0; i--) { for (int i = 0; i < descriptor_position_array.size(); i++) {
// just gonna redo the far pointer check loosing a couple of cycles but oh well // just gonna redo the far pointer check loosing a couple of cycles but oh well
uint64_t relative_distance = std::get<1>(descriptor_position_array.at(i)) - descriptor_buffer_position; int relative_distance = std::get<1>(descriptor_position_array.at(i)) - descriptor_buffer_position;
uint64_t descriptor = std::get<0>(descriptor_position_array.at(i)); uint64_t descriptor = std::get<0>(descriptor_position_array.at(i));
@ -324,15 +293,16 @@ std::tuple<uint64_t, uint64_t> Octree::GenerationRecursion(char* data, sf::Vecto
far_pointer_block_position--; far_pointer_block_position--;
} else { } else if (relative_distance > 0) {
descriptor |= relative_distance; descriptor |= (uint64_t)relative_distance;
} }
// We have finished building the CD so we push it onto the buffer // We have finished building the CD so we push it onto the buffer
memcpy(&descriptor_buffer[descriptor_buffer_position], &descriptor, sizeof(uint64_t)); memcpy(&descriptor_buffer[descriptor_buffer_position], &descriptor, sizeof(uint64_t));
descriptor_buffer_position--; descriptor_buffer_position--;
page_header_counter--;
} }

Loading…
Cancel
Save