lots of little tweaks, the cl is still completely broken, need to revert the oct position calc

master
MitchellHansen 7 years ago
parent 8a1eb5e430
commit 20f36d4eb1

@ -42,10 +42,10 @@ class Application {
public:
// static const int WINDOW_X = 1366;
// static const int WINDOW_Y = 768;
static const int WINDOW_X = 1920;
static const int WINDOW_Y = 1080;
// static const int WINDOW_X = 1366;
// static const int WINDOW_Y = 768;
static const int WINDOW_X = 200;
static const int WINDOW_Y = 200;
static const int MAP_X;
static const int MAP_Y;
static const int MAP_Z;

@ -124,7 +124,7 @@ struct TraversalState {
ulong current_descriptor_index;
int3 oct_pos;
int oct_size;
// ====== DEBUG =======
char found;
@ -144,12 +144,14 @@ struct TraversalState get_oct_vox(
ts.current_descriptor_index = setting(OCTREE_ROOT_INDEX);
ts.current_descriptor = octree_descriptor_buffer[ts.current_descriptor_index];
ts.scale = 0;
ts.oct_size = 0;
ts.parent_stack_position = 0;
ts.found = false;
ts.parent_stack[0] = ts.current_descriptor;
// Set our initial dimension and the position at the corner of the oct to keep track of our position
int dimension = setting(OCTDIM);
ts.oct_size = dimension/2;
ts.oct_pos = zeroed_int3;
// While we are not at the required resolution
@ -193,6 +195,8 @@ struct TraversalState get_oct_vox(
int mask_index = ts.idx_stack[ts.scale];
// Check to see if we are on a valid oct
if ((ts.current_descriptor >> 16) & mask_8[mask_index]) {
@ -202,13 +206,13 @@ struct TraversalState get_oct_vox(
// If it is, then we cannot traverse further as CP's won't have been generated
ts.found = true;
return ts;
//return ts.found;
}
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
ts.scale++;
ts.parent_stack_position++;
dimension /= 2;
ts.oct_size /= 2;
// Count the number of valid octs that come before and add it to the index to get the position
// Negate it by one as it counts itself
@ -235,19 +239,14 @@ struct TraversalState get_oct_vox(
// If the oct was not valid, then no CP's exists any further
// This implicitly says that if it's non-valid then it must be a leaf!!
// It appears that the traversal is now working but I need
// to focus on how to now take care of the end condition.
// Currently it adds the last parent on the second to lowest
// oct CP. Not sure if thats correct
// Parent stack is only populated up to the current descriptors parent.
// So that would be the current voxels grandparent
ts.found = 0;
return ts;
//return ts.found;
}
}
ts.found = 1;
return ts;
//return ts.found;
}
// =========================================================================
@ -300,25 +299,27 @@ __kernel void raycaster(
// Setup the voxel coords from the camera origin
// rtn = round towards negative
int3 voxel = convert_int3_rtn(*cam_pos);
int3 prev_voxel = voxel;
//voxel = voxel + convert_int3(*cam_pos < 0.0f);
// Delta T is the units a ray must travel along an axis in order to
// traverse an integer split
float3 delta_t = fabs(1.0f / ray_dir);
// Intersection T is the collection of the next intersection points
// for all 3 axis XYZ. We take the full negative cardinality when
// subtracting the floor, so we must transfer the sign over from
// the voxel step
float3 offset = delta_t * (floor(*cam_pos) - (*cam_pos));
float3 intersection_t = offset * convert_float3(voxel_step);
// When we transfer the sign over, we get the correct direction of
// the offset, but we merely transposed over the value instead of mirroring
// it over the axis like we want. So here, isless returns a boolean if intersection_t
// is less than 0 which dictates whether or not we subtract the delta which in effect
// mirrors the offset
intersection_t -= delta_t * convert_float3(isless(intersection_t, 0));
// for all 3 axis XYZ. We want to 'boost' the intersection_t start point up to
// the offset, so we get the -(difference) between the int voxel position and the
// float camera position.
float3 offset = delta_t * ((*cam_pos) - floor(*cam_pos));
// Now we apply the inverse of the ray sign. This gives us a negative
// offset for positive values and vis versa.
float3 intersection_t = offset * -convert_float3(voxel_step);
// For negative ray directions the positive value is the correct initial offset
// For positive rays we now just have to add the delta_t to the negative offset
// and that will give us the correct positive intersection_t. Don't forget to
// correct the stupid -1==true
intersection_t += delta_t * -1 * convert_float3(isless(intersection_t, 0));
int distance_traveled = 0;
int max_distance = 100;
@ -344,7 +345,7 @@ __kernel void raycaster(
octree_attachment_buffer,
settings_buffer);
int jump_power = (int)pow((float)2, log2((float)vox_dim) - (float)traversal_state.scale);
int jump_power = traversal_state.oct_size;
int prev_jump_power = jump_power;
int3 last_oct_pos = (0);
// TODO: DEBUG
@ -353,13 +354,13 @@ __kernel void raycaster(
// Andrew Woo's raycasting algo
while (distance_traveled < max_distance && bounce_count < 2) {
if (jump_power == 2){
color_accumulator = mix((1.0f, 1.0f, 1.0f, 1.0f), (1.0f, 1.0f, 1.0f, 1.0f), 1.0f - max(distance_traveled / 700.0f, 0.0f));
color_accumulator.w *= 4;
break;
}
// if (jump_power == 2){
// color_accumulator = mix((1.0f, 1.0f, 1.0f, 1.0f), (1.0f, 1.0f, 1.0f, 1.0f), 1.0f - max(distance_traveled / 700.0f, 0.0f));
// color_accumulator.w *= 4;
// break;
// }
// If we hit a voxel
if (setting(OCTENABLED) == 0 && voxel.x < (*map_dim).x/2 && voxel.y < (*map_dim).x/2 && voxel.z < (*map_dim).x) {
if (setting(OCTENABLED) == 0 && voxel.x < (*map_dim).x && voxel.y < (*map_dim).x && voxel.z < (*map_dim).x) {
traversal_state = get_oct_vox(
voxel,
@ -368,12 +369,16 @@ __kernel void raycaster(
octree_attachment_buffer,
settings_buffer);
intersection_t +=
convert_float3((traversal_state.oct_pos - voxel.xyz) * traversal_state.oct_size/2 + traversal_state.oct_size/2);
// True will result in a -1, e.g (0, 0, -1) so negate it to positive
face_mask = -1 * (intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy));
prev_jump_power = jump_power;
prev_voxel = voxel;
voxel.xyz += voxel_step.xyz * jump_power * face_mask.xyz;
voxel.xyz += voxel_step.xyz * face_mask.xyz * convert_int3((traversal_state.oct_pos - voxel.xyz) + traversal_state.oct_size);
// Test for out of bounds contions, add fog
if (any(voxel >= *map_dim) || any(voxel < 0)){
@ -418,9 +423,9 @@ __kernel void raycaster(
jump_power *= 2;
// Keep track of the 0th edge of our current oct
traversal_state.oct_pos.x = floor((float)(voxel.x / 2)) * jump_power;
traversal_state.oct_pos.y = floor((float)(voxel.y / 2)) * jump_power;
traversal_state.oct_pos.z = floor((float)(voxel.z / 2)) * jump_power;
traversal_state.oct_pos.x -= jump_power/2;
traversal_state.oct_pos.y -= jump_power/2;
traversal_state.oct_pos.z -= jump_power/2;
// Clear and pop the idx stack
traversal_state.idx_stack[traversal_state.scale] = 0;
@ -497,23 +502,23 @@ __kernel void raycaster(
// Unlike the single shot DFS, it makes a bit more sense to have this at the tail of the while loop
// Do the logic steps to find which sub oct we step down into
if (voxel.x >= (jump_power / 2) + traversal_state.oct_pos.x) {
if (voxel.x >= (jump_power * 2) + traversal_state.oct_pos.x) {
// Set our voxel position to the (0,0) of the correct oct
traversal_state.oct_pos.x += (jump_power / 2);
traversal_state.oct_pos.x += (jump_power * 2);
// Set the idx to represent the move
traversal_state.idx_stack[traversal_state.scale] |= idx_set_x_mask;
}
if (voxel.y >= (jump_power / 2) + traversal_state.oct_pos.y) {
if (voxel.y >= (jump_power * 2) + traversal_state.oct_pos.y) {
traversal_state.oct_pos.y += (jump_power / 2);
traversal_state.oct_pos.y += (jump_power * 2);
traversal_state.idx_stack[traversal_state.scale] |= idx_set_y_mask;
}
if (voxel.z >= (jump_power / 2) + traversal_state.oct_pos.z) {
if (voxel.z >= (jump_power * 2) + traversal_state.oct_pos.z) {
traversal_state.oct_pos.z += (jump_power / 2);
traversal_state.oct_pos.z += (jump_power * 2);
traversal_state.idx_stack[traversal_state.scale] |= idx_set_z_mask;
}
@ -529,7 +534,6 @@ __kernel void raycaster(
// Add the delta for the jump power and the traversed face
intersection_t += delta_t * jump_power * fabs(convert_float3(face_mask.xyz));
// Get the other faces
int3 other_faces = select((int3)(1,1,1), (int3)(0,0,0), (int3)(face_mask == 1));
@ -552,7 +556,12 @@ __kernel void raycaster(
break;
}
//voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))];
} else {
}
// =======================================================================
//
// =======================================================================
else {
// True will result in a -1, e.g (0, 0, -1) so negate it to positive
face_mask = -1 * (intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy));
@ -568,7 +577,9 @@ __kernel void raycaster(
}
voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))];
}
// =======================================================================
//
// =======================================================================
if (voxel_data == 5 || voxel_data == 6) {

@ -1,8 +1,8 @@
#include "Application.h"
const int Application::MAP_X = 32;
const int Application::MAP_Y = 32;
const int Application::MAP_Z = 32;
const int Application::MAP_X = 16;
const int Application::MAP_Y = 16;
const int Application::MAP_Z = 16;
Application::Application() {
@ -50,9 +50,10 @@ bool Application::init_clcaster() {
raycaster->assign_octree(map);
raycaster->assign_map(map);
camera = std::make_shared<Camera>(
sf::Vector3f(30.5f, 30.5f, 10.5f), // Starting position
sf::Vector2f(1.50f, -2.0f), // Direction
sf::Vector3f(3.8f, 3.4f, 2.6f), // Starting position
sf::Vector2f(1.56f, .81f), // Direction
window.get()
);
raycaster->assign_camera(camera);
@ -66,7 +67,7 @@ bool Application::init_clcaster() {
// Create a light prototype, send it to the controller, and get the handle back
LightPrototype prototype(
sf::Vector3f(30, 30.0f, 30.0f),
sf::Vector3f(10, 10.0f, 10.0f),
sf::Vector3f(-1.0f, -1.0f, -1.5f),
sf::Vector4f(0.01f, 0.01f, 0.01f, 0.2f)
);

@ -239,9 +239,6 @@ bool CLCaster::create_viewport(int width, int height, float v_fov, float h_fov)
// And an array of vectors describing the way the "lens" of our
// camera works
// This could be modified to make some odd looking camera lenses
viewport_matrix = new sf::Vector4f[width * height * 4];
for (int y = -view_res.y / 2; y < view_res.y / 2; y++) {
@ -258,9 +255,9 @@ bool CLCaster::create_viewport(int width, int height, float v_fov, float h_fov)
static_cast<float>(ray.z * cos(1.57) - ray.x * sin(1.57))
);
ray.y += (rand() % 1000) / 100000.0;
ray.x += (rand() % 1000) / 100000.0;
ray.z += (rand() % 1000) / 100000.0;
// ray.y += (rand() % 1000) / 100000.0;
// ray.x += (rand() % 1000) / 100000.0;
// ray.z += (rand() % 1000) / 100000.0;
ray = Normalize(ray);
int index = (x + view_res.x / 2) + view_res.x * (y + view_res.y / 2);

@ -54,9 +54,9 @@ int Camera::add_relative_impulse(DIRECTION impulse_direction, float speed) {
}
float val = movement.z;
//float val = movement.z;
movement += SphereToCart(dir) * speed;
movement.z = val;
//movement.z = val;
return 1;
}
@ -125,14 +125,14 @@ int Camera::update(double delta_time) {
movement.x *= static_cast<float>(friction_coefficient * delta_time * multiplier);
movement.y *= static_cast<float>(friction_coefficient * delta_time * multiplier);
if (position.z < 3.0f){
position.z = 3.0f;
movement.z = -0.1;
} else {
// gravity
movement.z -= 0.7f * delta_time;
}
movement.z *= static_cast<float>(friction_coefficient * delta_time * multiplier);
// if (position.z < 3.0f){
// position.z = 3.0f;
// movement.z = -0.1;
// } else {
// // gravity
// movement.z -= 0.7f * delta_time;
// }
return 1;
}

@ -16,19 +16,19 @@ ArrayMap::ArrayMap(sf::Vector3i dimensions) {
for (int x = 0; x < dimensions.x; x++) {
for (int y = 0; y < dimensions.y; y++) {
for (int z = 0; z < 2; z++) {
for (int z = 0; z < 1; z++) {
setVoxel(sf::Vector3i(x, y, z), 5);
}
}
}
for (int x = 0; x < dimensions.x/2-1; x++) {
for (int y = 0; y < dimensions.y/2-1; y++) {
for (int z = 0; z < dimensions.z/2-1; z++) {
setVoxel(sf::Vector3i(x, y, z), 5);
}
}
}
// for (int x = 0; x < dimensions.x/2-1; x++) {
// for (int y = 0; y < dimensions.y/2-1; y++) {
// for (int z = 0; z < dimensions.z/2-1; z++) {
// setVoxel(sf::Vector3i(x, y, z), 5);
// }
// }
// }
}

Loading…
Cancel
Save