fixed all compiler errors thrown by MSVC Switched experimental octree map back to the old map Refactored old map system, prettied it upmaster
parent
391dc63ec8
commit
561c07c602
@ -0,0 +1,42 @@
|
||||
#pragma once
|
||||
#include <SFML/System/Vector3.hpp>
|
||||
#include <SFML/System/Vector2.hpp>
|
||||
#include <SFML/Graphics/Color.hpp>
|
||||
#include <random>
|
||||
#include <iostream>
|
||||
#include <functional>
|
||||
#include <cmath>
|
||||
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
|
||||
#include <deque>
|
||||
|
||||
class Old_Map {
|
||||
public:
|
||||
|
||||
Old_Map(sf::Vector3i dim);
|
||||
~Old_Map();
|
||||
|
||||
void generate_terrain();
|
||||
|
||||
sf::Vector3i getDimensions();
|
||||
char* get_voxel_data();
|
||||
|
||||
protected:
|
||||
|
||||
private:
|
||||
|
||||
double* height_map;
|
||||
char *voxel_data;
|
||||
sf::Vector3i dimensions;
|
||||
|
||||
void set_voxel(sf::Vector3i position, int val);
|
||||
double sample(int x, int y);
|
||||
void set_sample(int x, int y, double value);
|
||||
void sample_square(int x, int y, int size, double value);
|
||||
void sample_diamond(int x, int y, int size, double value);
|
||||
void diamond_square(int stepsize, double scale);
|
||||
|
||||
|
||||
};
|
@ -0,0 +1,32 @@
|
||||
// TODO
|
||||
|
||||
/*
|
||||
|
||||
OpenCL:
|
||||
- Add phong lighting / fix the current implementation
|
||||
- Switch to switch lighting models
|
||||
- Separate out into a part of the rendering module
|
||||
|
||||
Map:
|
||||
- Reimplement the old map, put it into an old_map structure
|
||||
- Implement the new octree structure
|
||||
- storing the pre-octree volumetric data
|
||||
- determining when to load volumetric data into the in-memory structure
|
||||
- building the octree from that raw volumetric data
|
||||
- combining with other octree nodes to allow streaming of leafs
|
||||
- passing that data into the renderer
|
||||
- renderer needs to then traverse the octree
|
||||
- Terrain generation for real this time
|
||||
- Loader of 3rd party voxel data
|
||||
|
||||
Renderer:
|
||||
- Determine when to switch between the cpu and gpu rendering
|
||||
- call to the map to make sure that the gpu/cpu has an up to date copy
|
||||
of the volumetric data
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
*/
|
||||
|
@ -0,0 +1,225 @@
|
||||
#pragma once
|
||||
#include <iostream>
|
||||
#include <SFML/System/Vector3.hpp>
|
||||
#include <SFML/System/Vector2.hpp>
|
||||
#include "util.hpp"
|
||||
#include <Old_map.h>
|
||||
|
||||
Old_Map::Old_Map(sf::Vector3i dim) {
|
||||
dimensions = dim;
|
||||
}
|
||||
|
||||
|
||||
Old_Map::~Old_Map() {
|
||||
}
|
||||
|
||||
void Old_Map::generate_terrain() {
|
||||
std::mt19937 gen;
|
||||
std::uniform_real_distribution<double> dis(-1.0, 1.0);
|
||||
auto f_rand = std::bind(dis, gen);
|
||||
|
||||
voxel_data = new char[dimensions.x * dimensions.y * dimensions.z];
|
||||
height_map = new double[dimensions.x * dimensions.y];
|
||||
|
||||
for (int i = 0; i < dimensions.x * dimensions.y * dimensions.z; i++) {
|
||||
voxel_data[i] = 0;
|
||||
}
|
||||
|
||||
for (int i = 0; i < dimensions.x * dimensions.y; i++) {
|
||||
height_map[i] = 0;
|
||||
}
|
||||
|
||||
//size of grid to generate, note this must be a
|
||||
//value 2^n+1
|
||||
int DATA_SIZE = dimensions.x + 1;
|
||||
//an initial seed value for the corners of the data
|
||||
double SEED = rand() % 25 + 25;
|
||||
|
||||
//seed the data
|
||||
set_sample(0, 0, SEED);
|
||||
set_sample(0, dimensions.y, SEED);
|
||||
set_sample(dimensions.x, 0, SEED);
|
||||
set_sample(dimensions.x, dimensions.y, SEED);
|
||||
|
||||
double h = 30.0;//the range (-h -> +h) for the average offset
|
||||
//for the new value in range of h
|
||||
//side length is distance of a single square side
|
||||
//or distance of diagonal in diamond
|
||||
for (int sideLength = DATA_SIZE - 1;
|
||||
//side length must be >= 2 so we always have
|
||||
//a new value (if its 1 we overwrite existing values
|
||||
//on the last iteration)
|
||||
sideLength >= 2;
|
||||
//each iteration we are looking at smaller squares
|
||||
//diamonds, and we decrease the variation of the offset
|
||||
sideLength /= 2, h /= 2.0) {
|
||||
//half the length of the side of a square
|
||||
//or distance from diamond center to one corner
|
||||
//(just to make calcs below a little clearer)
|
||||
int halfSide = sideLength / 2;
|
||||
|
||||
//generate the new square values
|
||||
for (int x = 0; x < DATA_SIZE - 1; x += sideLength) {
|
||||
for (int y = 0; y < DATA_SIZE - 1; y += sideLength) {
|
||||
//x, y is upper left corner of square
|
||||
//calculate average of existing corners
|
||||
double avg = sample(x, y) + //top left
|
||||
sample(x + sideLength, y) +//top right
|
||||
sample(x, y + sideLength) + //lower left
|
||||
sample(x + sideLength, y + sideLength);//lower right
|
||||
avg /= 4.0;
|
||||
|
||||
//center is average plus random offset
|
||||
set_sample(x + halfSide, y + halfSide,
|
||||
//We calculate random value in range of 2h
|
||||
//and then subtract h so the end value is
|
||||
//in the range (-h, +h)
|
||||
avg + (f_rand() * 2 * h) - h);
|
||||
}
|
||||
}
|
||||
|
||||
//generate the diamond values
|
||||
//since the diamonds are staggered we only move x
|
||||
//by half side
|
||||
//NOTE: if the data shouldn't wrap then x < DATA_SIZE
|
||||
//to generate the far edge values
|
||||
for (int x = 0; x < DATA_SIZE - 1; x += halfSide) {
|
||||
//and y is x offset by half a side, but moved by
|
||||
//the full side length
|
||||
//NOTE: if the data shouldn't wrap then y < DATA_SIZE
|
||||
//to generate the far edge values
|
||||
for (int y = (x + halfSide) % sideLength; y < DATA_SIZE - 1; y += sideLength) {
|
||||
//x, y is center of diamond
|
||||
//note we must use mod and add DATA_SIZE for subtraction
|
||||
//so that we can wrap around the array to find the corners
|
||||
double avg =
|
||||
sample((x - halfSide + DATA_SIZE) % DATA_SIZE, y) + //left of center
|
||||
sample((x + halfSide) % DATA_SIZE, y) + //right of center
|
||||
sample(x, (y + halfSide) % DATA_SIZE) + //below center
|
||||
sample(x, (y - halfSide + DATA_SIZE) % DATA_SIZE); //above center
|
||||
avg /= 4.0;
|
||||
|
||||
//new value = average plus random offset
|
||||
//We calculate random value in range of 2h
|
||||
//and then subtract h so the end value is
|
||||
//in the range (-h, +h)
|
||||
avg = avg + (f_rand() * 2 * h) - h;
|
||||
//update value for center of diamond
|
||||
set_sample(x, y, avg);
|
||||
|
||||
//wrap values on the edges, remove
|
||||
//this and adjust loop condition above
|
||||
//for non-wrapping values.
|
||||
if (x == 0) set_sample(DATA_SIZE - 1, y, avg);
|
||||
if (y == 0) set_sample(x, DATA_SIZE - 1, avg);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
for (int x = 0; x < dimensions.x; x++) {
|
||||
for (int y = 0; y < dimensions.y; y++) {
|
||||
|
||||
if (height_map[x + y * dimensions.x] > 0) {
|
||||
|
||||
int z = static_cast<int>(height_map[x + y * dimensions.x]);
|
||||
|
||||
while (z > 0) {
|
||||
voxel_data[x + dimensions.x * (y + dimensions.z * z)] = 5;
|
||||
z--;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
for (int x = 0; x < dimensions.x / 10; x++) {
|
||||
for (int y = 0; y < dimensions.y / 10; y++) {
|
||||
for (int z = 0; z < dimensions.z; z++) {
|
||||
if (rand() % 1000 < 1)
|
||||
voxel_data[x + dimensions.x * (y + dimensions.z * z)] = rand() % 6;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void Old_Map::set_voxel(sf::Vector3i position, int val) {
|
||||
voxel_data[position.x + dimensions.x * (position.y + dimensions.z * position.z)] = val;
|
||||
}
|
||||
|
||||
sf::Vector3i Old_Map::getDimensions() {
|
||||
return dimensions;
|
||||
}
|
||||
|
||||
char* Old_Map::get_voxel_data() {
|
||||
return voxel_data;
|
||||
}
|
||||
|
||||
double Old_Map::sample(int x, int y) {
|
||||
return height_map[(x & (dimensions.x - 1)) + (y & (dimensions.y - 1)) * dimensions.x];
|
||||
}
|
||||
|
||||
void Old_Map::set_sample(int x, int y, double value) {
|
||||
height_map[(x & (dimensions.x - 1)) + (y & (dimensions.y - 1)) * dimensions.x] = value;
|
||||
}
|
||||
|
||||
void Old_Map::sample_square(int x, int y, int size, double value) {
|
||||
int hs = size / 2;
|
||||
|
||||
// a b
|
||||
//
|
||||
// x
|
||||
//
|
||||
// c d
|
||||
|
||||
double a = sample(x - hs, y - hs);
|
||||
double b = sample(x + hs, y - hs);
|
||||
double c = sample(x - hs, y + hs);
|
||||
double d = sample(x + hs, y + hs);
|
||||
|
||||
set_sample(x, y, ((a + b + c + d) / 4.0) + value);
|
||||
|
||||
}
|
||||
|
||||
void Old_Map::sample_diamond(int x, int y, int size, double value) {
|
||||
int hs = size / 2;
|
||||
|
||||
// c
|
||||
//
|
||||
//a x b
|
||||
//
|
||||
// d
|
||||
|
||||
double a = sample(x - hs, y);
|
||||
double b = sample(x + hs, y);
|
||||
double c = sample(x, y - hs);
|
||||
double d = sample(x, y + hs);
|
||||
|
||||
set_sample(x, y, ((a + b + c + d) / 4.0) + value);
|
||||
}
|
||||
|
||||
void Old_Map::diamond_square(int stepsize, double scale) {
|
||||
|
||||
std::mt19937 generator;
|
||||
std::uniform_real_distribution<double> uniform_distribution(-1.0, 1.0);
|
||||
auto f_rand = std::bind(uniform_distribution, std::ref(generator));
|
||||
|
||||
int halfstep = stepsize / 2;
|
||||
|
||||
for (int y = halfstep; y < dimensions.y + halfstep; y += stepsize) {
|
||||
for (int x = halfstep; x < dimensions.x + halfstep; x += stepsize) {
|
||||
sample_square(x, y, stepsize, f_rand() * scale);
|
||||
}
|
||||
}
|
||||
|
||||
for (int y = 0; y < dimensions.y; y += stepsize) {
|
||||
for (int x = 0; x < dimensions.x; x += stepsize) {
|
||||
sample_diamond(x + halfstep, y, stepsize, f_rand() * scale);
|
||||
sample_diamond(x, y + halfstep, stepsize, f_rand() * scale);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in new issue