|
|
|
@ -176,14 +176,14 @@ struct TraversalState get_oct_vox(
|
|
|
|
|
while (dimension > 1) {
|
|
|
|
|
|
|
|
|
|
// Do the logic steps to find which sub oct we step down into
|
|
|
|
|
uchar3 masks = select((uchar3)(0, 0, 0),
|
|
|
|
|
uchar3 thing = select((uchar3)(0, 0, 0),
|
|
|
|
|
(uchar3)(idx_set_x_mask, idx_set_y_mask, idx_set_z_mask),
|
|
|
|
|
convert_char3(position >= (int3)(dimension/2) + ts.oct_pos));
|
|
|
|
|
|
|
|
|
|
// So we can be a little bit tricky here and increment our
|
|
|
|
|
// array index that holds our masks as we build the idx.
|
|
|
|
|
// Adding 1 for X, 2 for Y, and 4 for Z
|
|
|
|
|
ts.idx_stack[ts.scale] = masks.x | masks.y | masks.z;
|
|
|
|
|
ts.idx_stack[ts.scale] = thing.x | thing.y | thing.z;
|
|
|
|
|
|
|
|
|
|
// Set our voxel position to the (0,0) of the correct oct by rerunning the logic step
|
|
|
|
|
ts.oct_pos = ts.sub_oct_pos;
|
|
|
|
@ -320,7 +320,7 @@ __kernel void raycaster(
|
|
|
|
|
intersection_t += delta_t * -1 * convert_float3(isless(intersection_t, 0));
|
|
|
|
|
|
|
|
|
|
int distance_traveled = 0;
|
|
|
|
|
int max_distance = 80;
|
|
|
|
|
int max_distance = 20;
|
|
|
|
|
uint bounce_count = 0;
|
|
|
|
|
int3 face_mask = { 0, 0, 0 };
|
|
|
|
|
int voxel_data = 0;
|
|
|
|
@ -356,6 +356,7 @@ __kernel void raycaster(
|
|
|
|
|
// Andrew Woo's raycasting algo
|
|
|
|
|
while (distance_traveled < max_distance && bounce_count < 2) {
|
|
|
|
|
|
|
|
|
|
if (setting(OCTENABLED) == 0) {
|
|
|
|
|
|
|
|
|
|
// True will result in a -1, e.g (0, 0, -1) so negate it to positive
|
|
|
|
|
face_mask = -1 * (intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy));
|
|
|
|
@ -370,7 +371,7 @@ __kernel void raycaster(
|
|
|
|
|
// Test for out of bounds contions, add fog
|
|
|
|
|
if (any(voxel >= *map_dim) || any(voxel < 0)){
|
|
|
|
|
voxel.xyz -= voxel_step.xyz * jump_power * face_mask.xyz;
|
|
|
|
|
color_accumulator = mix(fog_color, (1.0f,0.3f,0.3f,1.0f), 1.0f) - max(distance_traveled / 100.0f, 0.0f);
|
|
|
|
|
color_accumulator = mix(fog_color, (1.0f,0.3f,0.3f,1.0f), 1.0f) - max(distance_traveled / 8.0f, 0.0f);
|
|
|
|
|
color_accumulator.w = 1.0f;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
@ -378,8 +379,9 @@ __kernel void raycaster(
|
|
|
|
|
uchar prev_val = traversal_state.idx_stack[traversal_state.scale];
|
|
|
|
|
uchar this_face_mask = 0;
|
|
|
|
|
|
|
|
|
|
uchar3 tmp = select((uchar3)(0), (uchar3)(idx_set_x_mask,idx_set_y_mask,idx_set_z_mask), convert_uchar3(face_mask == (1,1,1)));
|
|
|
|
|
this_face_mask = tmp.x | tmp.y | tmp.z;
|
|
|
|
|
// Check the voxel face that we traversed
|
|
|
|
|
uchar3 tmp = select((uchar3)(0), (uchar3)(idx_set_x_mask,idx_set_y_mask,idx_set_z_mask), convert_uchar3(face_mask == (1,1,1)));
|
|
|
|
|
this_face_mask = tmp.x | tmp.y | tmp.z;
|
|
|
|
|
|
|
|
|
|
// and increment the idx in the idx stack
|
|
|
|
|
traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask;
|
|
|
|
@ -395,6 +397,7 @@ __kernel void raycaster(
|
|
|
|
|
(bool)(traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index],
|
|
|
|
|
mask_index > prev_val);
|
|
|
|
|
|
|
|
|
|
failsafe = 0;
|
|
|
|
|
while ((mask_index < prev_val || !is_valid) && traversal_state.scale >= 1) {
|
|
|
|
|
|
|
|
|
|
// Clear and pop the idx stack
|
|
|
|
@ -432,6 +435,9 @@ __kernel void raycaster(
|
|
|
|
|
// Get the mask index of the new idx and check the valid status
|
|
|
|
|
mask_index = traversal_state.idx_stack[traversal_state.scale];
|
|
|
|
|
is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index];
|
|
|
|
|
failsafe++;
|
|
|
|
|
if (failsafe > 10)
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -439,7 +445,13 @@ __kernel void raycaster(
|
|
|
|
|
// valid oct at the leaf indicated by the current idx in the idx stack scale
|
|
|
|
|
|
|
|
|
|
// While we haven't bottomed out and the oct we're looking at is valid
|
|
|
|
|
while((jump_power > 1 || jump_power == 8 ) && is_valid) {
|
|
|
|
|
failsafe = 0;
|
|
|
|
|
if (jump_power == 8 && is_valid)
|
|
|
|
|
failsafe = 5;
|
|
|
|
|
if (jump_power > 1 && is_valid)
|
|
|
|
|
failsafe = 1;
|
|
|
|
|
|
|
|
|
|
while (jump_power > 1 && is_valid) {
|
|
|
|
|
|
|
|
|
|
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
|
|
|
|
|
|
|
|
|
@ -476,18 +488,9 @@ __kernel void raycaster(
|
|
|
|
|
// Unlike the single shot DFS, we inherited a valid idx from the upwards traversal. So now we must
|
|
|
|
|
// set the idx at the tail end of this for loop
|
|
|
|
|
// Do the logic steps to find which sub oct we step down into
|
|
|
|
|
|
|
|
|
|
// Do the logic steps to find which sub oct we step down into
|
|
|
|
|
uchar3 masks = select((uchar3)(0, 0, 0),
|
|
|
|
|
(uchar3)(idx_set_x_mask, idx_set_y_mask, idx_set_z_mask),
|
|
|
|
|
convert_char3(voxel >= (int3)(jump_power) + traversal_state.oct_pos));
|
|
|
|
|
|
|
|
|
|
// So we can be a little bit tricky here and increment our
|
|
|
|
|
// array index that holds our masks as we build the idx.
|
|
|
|
|
// Adding 1 for X, 2 for Y, and 4 for Z
|
|
|
|
|
traversal_state.idx_stack[traversal_state.scale] = masks.x | masks.y | masks.z;
|
|
|
|
|
|
|
|
|
|
// Set our voxel position to the (0,0) of the correct oct by rerunning the logic step
|
|
|
|
|
(uchar3)(idx_set_x_mask, idx_set_y_mask, idx_set_z_mask),
|
|
|
|
|
convert_char3(voxel >= (int3)(jump_power) + traversal_state.oct_pos));
|
|
|
|
|
traversal_state.oct_pos += select((int3)(0), (int3)(jump_power), voxel >= (int3)(jump_power) + traversal_state.oct_pos);
|
|
|
|
|
|
|
|
|
|
jump_power /= 2;
|
|
|
|
@ -498,8 +501,10 @@ __kernel void raycaster(
|
|
|
|
|
|
|
|
|
|
traversal_state.scale++;
|
|
|
|
|
|
|
|
|
|
failsafe++;
|
|
|
|
|
if (failsafe > 10)
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
traversal_state.sub_oct_pos = traversal_state.oct_pos;
|
|
|
|
|
|
|
|
|
|
uchar3 masks = select((uchar3)(0, 0, 0),
|
|
|
|
@ -514,6 +519,8 @@ __kernel void raycaster(
|
|
|
|
|
// Set our voxel position to the (0,0) of the correct oct by rerunning the logic step
|
|
|
|
|
traversal_state.sub_oct_pos += select((int3)(0), (int3)(jump_power), voxel >= (int3)(jump_power) + traversal_state.oct_pos);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
traversal_state = traversal_state;
|
|
|
|
|
// Add the delta for the jump power and the traversed face
|
|
|
|
|
intersection_t += delta_t * jump_power * fabs(convert_float3(face_mask.xyz));
|
|
|
|
|
|
|
|
|
@ -540,168 +547,168 @@ __kernel void raycaster(
|
|
|
|
|
// break;
|
|
|
|
|
// }
|
|
|
|
|
//voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))];
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// =======================================================================
|
|
|
|
|
//
|
|
|
|
|
// =======================================================================
|
|
|
|
|
// else {
|
|
|
|
|
//
|
|
|
|
|
// // True will result in a -1, e.g (0, 0, -1) so negate it to positive
|
|
|
|
|
// face_mask = -1 * (intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy));
|
|
|
|
|
// intersection_t += delta_t * convert_float3(face_mask.xyz);
|
|
|
|
|
// voxel.xyz += voxel_step.xyz * face_mask.xyz;
|
|
|
|
|
//
|
|
|
|
|
// // Test for out of bounds contions, add fog
|
|
|
|
|
// if (any(voxel >= *map_dim) || any(voxel < 0)){
|
|
|
|
|
// voxel.xyz -= voxel_step.xyz * face_mask.xyz;
|
|
|
|
|
// color_accumulator = mix(fog_color, voxel_color, 1.0f - max(distance_traveled / 700.0f, 0.0f));
|
|
|
|
|
// color_accumulator.w *= 4;
|
|
|
|
|
// break;
|
|
|
|
|
// }
|
|
|
|
|
// voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))];
|
|
|
|
|
// }
|
|
|
|
|
else {
|
|
|
|
|
|
|
|
|
|
// True will result in a -1, e.g (0, 0, -1) so negate it to positive
|
|
|
|
|
face_mask = -1 * (intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy));
|
|
|
|
|
intersection_t += delta_t * convert_float3(face_mask.xyz);
|
|
|
|
|
voxel.xyz += voxel_step.xyz * face_mask.xyz;
|
|
|
|
|
|
|
|
|
|
// Test for out of bounds contions, add fog
|
|
|
|
|
if (any(voxel >= *map_dim) || any(voxel < 0)){
|
|
|
|
|
voxel.xyz -= voxel_step.xyz * face_mask.xyz;
|
|
|
|
|
color_accumulator = mix(fog_color, voxel_color, 1.0f - max(distance_traveled / 700.0f, 0.0f));
|
|
|
|
|
color_accumulator.w *= 4;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))];
|
|
|
|
|
}
|
|
|
|
|
// =======================================================================
|
|
|
|
|
//
|
|
|
|
|
// =======================================================================
|
|
|
|
|
|
|
|
|
|
// if (voxel_data == 5 || voxel_data == 6) {
|
|
|
|
|
//
|
|
|
|
|
// // Determine where on the 2d plane the ray intersected
|
|
|
|
|
// face_position = zeroed_float3;
|
|
|
|
|
// tile_face_position = zeroed_float2;
|
|
|
|
|
//
|
|
|
|
|
// // Collect the sign of the face hit for ray redirection
|
|
|
|
|
// sign = (1.0f, 1.0f, 1.0f);
|
|
|
|
|
//
|
|
|
|
|
// // First determine the percent of the way the ray is towards the next intersection_t
|
|
|
|
|
// // in relation to the xyz position on the plane
|
|
|
|
|
// if (face_mask.x == 1) {
|
|
|
|
|
//
|
|
|
|
|
// sign.x *= -1.0;
|
|
|
|
|
//
|
|
|
|
|
// // the next intersection for this plane - the last intersection of the passed plane / delta of this plane
|
|
|
|
|
// // basically finds how far in on the other 2 axis we are when the ray traversed the plane
|
|
|
|
|
// float z_percent = (intersection_t.z - (intersection_t.x - delta_t.x)) / delta_t.z;
|
|
|
|
|
// float y_percent = (intersection_t.y - (intersection_t.x - delta_t.x)) / delta_t.y;
|
|
|
|
|
//
|
|
|
|
|
// // Since we intersected face x, we know that we are at the face (1.0)
|
|
|
|
|
// // I think the 1.001f rendering bug is the ray thinking it's within the voxel
|
|
|
|
|
// // even though it's sitting on the very edge
|
|
|
|
|
// face_position = (float3)(1.00001f, y_percent, z_percent);
|
|
|
|
|
// tile_face_position = face_position.yz;
|
|
|
|
|
// }
|
|
|
|
|
// else if (face_mask.y == 1) {
|
|
|
|
|
//
|
|
|
|
|
// sign.y *= -1.0;
|
|
|
|
|
// float x_percent = (intersection_t.x - (intersection_t.y - delta_t.y)) / delta_t.x;
|
|
|
|
|
// float z_percent = (intersection_t.z - (intersection_t.y - delta_t.y)) / delta_t.z;
|
|
|
|
|
// face_position = (float3)(x_percent, 1.00001f, z_percent);
|
|
|
|
|
// tile_face_position = face_position.xz;
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// else if (face_mask.z == 1) {
|
|
|
|
|
//
|
|
|
|
|
// sign.z *= -1.0;
|
|
|
|
|
// float x_percent = (intersection_t.x - (intersection_t.z - delta_t.z)) / delta_t.x;
|
|
|
|
|
// float y_percent = (intersection_t.y - (intersection_t.z - delta_t.z)) / delta_t.y;
|
|
|
|
|
// face_position = (float3)(x_percent, y_percent, 1.00001f);
|
|
|
|
|
// tile_face_position = face_position.xy;
|
|
|
|
|
//
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// // Because the raycasting process is agnostic to the quadrant
|
|
|
|
|
// // it's working in, we need to transpose the sign over to the face positions.
|
|
|
|
|
// // If we don't it will think that it is always working in the (1, 1, 1) quadrant
|
|
|
|
|
// // and will just "copy" the quadrant. This includes shadows as they use the face_position
|
|
|
|
|
// // in order to cast the intersection ray!!
|
|
|
|
|
//
|
|
|
|
|
// face_position.x = select((face_position.x), (-face_position.x + 1.0f), (int)(ray_dir.x > 0));
|
|
|
|
|
// tile_face_position.x = select((tile_face_position.x), (-tile_face_position.x + 1.0f), (int)(ray_dir.x < 0));
|
|
|
|
|
//
|
|
|
|
|
// if (ray_dir.y > 0){
|
|
|
|
|
// face_position.y = -face_position.y + 1;
|
|
|
|
|
// } else {
|
|
|
|
|
// tile_face_position.x = 1.0 - tile_face_position.x;
|
|
|
|
|
//
|
|
|
|
|
// // We run into the Hairy ball problem, so we need to define
|
|
|
|
|
// // a special case for the zmask
|
|
|
|
|
// if (face_mask.z == 1) {
|
|
|
|
|
// tile_face_position.x = 1.0f - tile_face_position.x;
|
|
|
|
|
// tile_face_position.y = 1.0f - tile_face_position.y;
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// face_position.z = select((face_position.z), (-face_position.z + 1.0f), -1 * (int)(ray_dir.z > 0));
|
|
|
|
|
// tile_face_position.y = select((tile_face_position.y), (-tile_face_position.y + 1.0f), -1 * (int)(ray_dir.z < 0));
|
|
|
|
|
//
|
|
|
|
|
// // Now we detect what type of of voxel we intersected and decide whether
|
|
|
|
|
// // to bend the ray, send out a light intersection ray, or add texture color
|
|
|
|
|
//
|
|
|
|
|
// // TEXTURE HIT + SHADOW RAY REDIRECTION
|
|
|
|
|
// if (voxel_data == 5 && !shadow_ray){
|
|
|
|
|
//
|
|
|
|
|
// shadow_ray = true;
|
|
|
|
|
// voxel_color.xyz += (float3)read_imagef(
|
|
|
|
|
// texture_atlas,
|
|
|
|
|
// convert_int2(tile_face_position * convert_float2(*atlas_dim / *tile_dim)) +
|
|
|
|
|
// convert_int2((float2)(5, 0) * convert_float2(*atlas_dim / *tile_dim))
|
|
|
|
|
// ).xyz/2;
|
|
|
|
|
//
|
|
|
|
|
// color_accumulator = view_light(
|
|
|
|
|
// voxel_color,
|
|
|
|
|
// (convert_float3(voxel) + face_position) - (float3)(lights[4], lights[5], lights[6]),
|
|
|
|
|
// (float4)(lights[0], lights[1], lights[2], lights[3]),
|
|
|
|
|
// (convert_float3(voxel) + face_position) - (*cam_pos),
|
|
|
|
|
// face_mask * voxel_step
|
|
|
|
|
// );
|
|
|
|
|
//
|
|
|
|
|
// fog_distance = distance_traveled;
|
|
|
|
|
// max_distance = distance_traveled + fast_distance(convert_float3(voxel), (float3)(lights[4], lights[5], lights[6]));
|
|
|
|
|
//
|
|
|
|
|
// float3 hit_pos = convert_float3(voxel) + face_position;
|
|
|
|
|
// ray_dir = normalize((float3)(lights[4], lights[5], lights[6]) - hit_pos);
|
|
|
|
|
// if (any(ray_dir == zeroed_float3))
|
|
|
|
|
// return;
|
|
|
|
|
//
|
|
|
|
|
// voxel -= voxel_step * face_mask;
|
|
|
|
|
// voxel_step = ( -1, -1, -1 ) * ((ray_dir > 0) - (ray_dir < 0));
|
|
|
|
|
//
|
|
|
|
|
// delta_t = fabs(1.0f / ray_dir);
|
|
|
|
|
// intersection_t = delta_t * ((hit_pos) - floor(hit_pos)) * convert_float3(voxel_step);
|
|
|
|
|
// intersection_t += delta_t * -convert_float3(isless(intersection_t, 0));
|
|
|
|
|
//
|
|
|
|
|
// // REFLECTION
|
|
|
|
|
// } else if (voxel_data == 6 && !shadow_ray) {
|
|
|
|
|
//
|
|
|
|
|
// voxel_color.xyz += (float3)read_imagef(
|
|
|
|
|
// texture_atlas,
|
|
|
|
|
// convert_int2(tile_face_position * convert_float2(*atlas_dim / *tile_dim)) +
|
|
|
|
|
// convert_int2((float2)(3, 4) * convert_float2(*atlas_dim / *tile_dim))
|
|
|
|
|
// ).xyz/4;
|
|
|
|
|
//
|
|
|
|
|
// voxel_color.w -= 0.0f;
|
|
|
|
|
//
|
|
|
|
|
// float3 hit_pos = convert_float3(voxel) + face_position;
|
|
|
|
|
// ray_dir *= sign;
|
|
|
|
|
// if (any(ray_dir == zeroed_float3))
|
|
|
|
|
// return;
|
|
|
|
|
//
|
|
|
|
|
// voxel -= voxel_step * face_mask;
|
|
|
|
|
// voxel_step = ( -1, -1, -1 ) * (ray_dir > 0) - (ray_dir < 0);
|
|
|
|
|
//
|
|
|
|
|
// delta_t = fabs(1.0f / ray_dir);
|
|
|
|
|
// intersection_t = delta_t * ((hit_pos)-floor(hit_pos)) * convert_float3(voxel_step);
|
|
|
|
|
// intersection_t += delta_t * -convert_float3(isless(intersection_t, 0));
|
|
|
|
|
//
|
|
|
|
|
// bounce_count += 1;
|
|
|
|
|
//
|
|
|
|
|
// // SHADOW RAY HIT
|
|
|
|
|
// } else {
|
|
|
|
|
// color_accumulator.w = 0.1f;
|
|
|
|
|
// break;
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
if (voxel_data == 5 || voxel_data == 6) {
|
|
|
|
|
|
|
|
|
|
// Determine where on the 2d plane the ray intersected
|
|
|
|
|
face_position = zeroed_float3;
|
|
|
|
|
tile_face_position = zeroed_float2;
|
|
|
|
|
|
|
|
|
|
// Collect the sign of the face hit for ray redirection
|
|
|
|
|
sign = (1.0f, 1.0f, 1.0f);
|
|
|
|
|
|
|
|
|
|
// First determine the percent of the way the ray is towards the next intersection_t
|
|
|
|
|
// in relation to the xyz position on the plane
|
|
|
|
|
if (face_mask.x == 1) {
|
|
|
|
|
|
|
|
|
|
sign.x *= -1.0;
|
|
|
|
|
|
|
|
|
|
// the next intersection for this plane - the last intersection of the passed plane / delta of this plane
|
|
|
|
|
// basically finds how far in on the other 2 axis we are when the ray traversed the plane
|
|
|
|
|
float z_percent = (intersection_t.z - (intersection_t.x - delta_t.x)) / delta_t.z;
|
|
|
|
|
float y_percent = (intersection_t.y - (intersection_t.x - delta_t.x)) / delta_t.y;
|
|
|
|
|
|
|
|
|
|
// Since we intersected face x, we know that we are at the face (1.0)
|
|
|
|
|
// I think the 1.001f rendering bug is the ray thinking it's within the voxel
|
|
|
|
|
// even though it's sitting on the very edge
|
|
|
|
|
face_position = (float3)(1.00001f, y_percent, z_percent);
|
|
|
|
|
tile_face_position = face_position.yz;
|
|
|
|
|
}
|
|
|
|
|
else if (face_mask.y == 1) {
|
|
|
|
|
|
|
|
|
|
sign.y *= -1.0;
|
|
|
|
|
float x_percent = (intersection_t.x - (intersection_t.y - delta_t.y)) / delta_t.x;
|
|
|
|
|
float z_percent = (intersection_t.z - (intersection_t.y - delta_t.y)) / delta_t.z;
|
|
|
|
|
face_position = (float3)(x_percent, 1.00001f, z_percent);
|
|
|
|
|
tile_face_position = face_position.xz;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
else if (face_mask.z == 1) {
|
|
|
|
|
|
|
|
|
|
sign.z *= -1.0;
|
|
|
|
|
float x_percent = (intersection_t.x - (intersection_t.z - delta_t.z)) / delta_t.x;
|
|
|
|
|
float y_percent = (intersection_t.y - (intersection_t.z - delta_t.z)) / delta_t.y;
|
|
|
|
|
face_position = (float3)(x_percent, y_percent, 1.00001f);
|
|
|
|
|
tile_face_position = face_position.xy;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Because the raycasting process is agnostic to the quadrant
|
|
|
|
|
// it's working in, we need to transpose the sign over to the face positions.
|
|
|
|
|
// If we don't it will think that it is always working in the (1, 1, 1) quadrant
|
|
|
|
|
// and will just "copy" the quadrant. This includes shadows as they use the face_position
|
|
|
|
|
// in order to cast the intersection ray!!
|
|
|
|
|
|
|
|
|
|
face_position.x = select((face_position.x), (-face_position.x + 1.0f), (int)(ray_dir.x > 0));
|
|
|
|
|
tile_face_position.x = select((tile_face_position.x), (-tile_face_position.x + 1.0f), (int)(ray_dir.x < 0));
|
|
|
|
|
|
|
|
|
|
if (ray_dir.y > 0){
|
|
|
|
|
face_position.y = -face_position.y + 1;
|
|
|
|
|
} else {
|
|
|
|
|
tile_face_position.x = 1.0 - tile_face_position.x;
|
|
|
|
|
|
|
|
|
|
// We run into the Hairy ball problem, so we need to define
|
|
|
|
|
// a special case for the zmask
|
|
|
|
|
if (face_mask.z == 1) {
|
|
|
|
|
tile_face_position.x = 1.0f - tile_face_position.x;
|
|
|
|
|
tile_face_position.y = 1.0f - tile_face_position.y;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
face_position.z = select((face_position.z), (-face_position.z + 1.0f), -1 * (int)(ray_dir.z > 0));
|
|
|
|
|
tile_face_position.y = select((tile_face_position.y), (-tile_face_position.y + 1.0f), -1 * (int)(ray_dir.z < 0));
|
|
|
|
|
|
|
|
|
|
// Now we detect what type of of voxel we intersected and decide whether
|
|
|
|
|
// to bend the ray, send out a light intersection ray, or add texture color
|
|
|
|
|
|
|
|
|
|
// TEXTURE HIT + SHADOW RAY REDIRECTION
|
|
|
|
|
if (voxel_data == 5 && !shadow_ray){
|
|
|
|
|
|
|
|
|
|
shadow_ray = true;
|
|
|
|
|
voxel_color.xyz += (float3)read_imagef(
|
|
|
|
|
texture_atlas,
|
|
|
|
|
convert_int2(tile_face_position * convert_float2(*atlas_dim / *tile_dim)) +
|
|
|
|
|
convert_int2((float2)(5, 0) * convert_float2(*atlas_dim / *tile_dim))
|
|
|
|
|
).xyz/2;
|
|
|
|
|
|
|
|
|
|
color_accumulator = view_light(
|
|
|
|
|
voxel_color,
|
|
|
|
|
(convert_float3(voxel) + face_position) - (float3)(lights[4], lights[5], lights[6]),
|
|
|
|
|
(float4)(lights[0], lights[1], lights[2], lights[3]),
|
|
|
|
|
(convert_float3(voxel) + face_position) - (*cam_pos),
|
|
|
|
|
face_mask * voxel_step
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
fog_distance = distance_traveled;
|
|
|
|
|
max_distance = distance_traveled + fast_distance(convert_float3(voxel), (float3)(lights[4], lights[5], lights[6]));
|
|
|
|
|
|
|
|
|
|
float3 hit_pos = convert_float3(voxel) + face_position;
|
|
|
|
|
ray_dir = normalize((float3)(lights[4], lights[5], lights[6]) - hit_pos);
|
|
|
|
|
if (any(ray_dir == zeroed_float3))
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
voxel -= voxel_step * face_mask;
|
|
|
|
|
voxel_step = ( -1, -1, -1 ) * ((ray_dir > 0) - (ray_dir < 0));
|
|
|
|
|
|
|
|
|
|
delta_t = fabs(1.0f / ray_dir);
|
|
|
|
|
intersection_t = delta_t * ((hit_pos) - floor(hit_pos)) * convert_float3(voxel_step);
|
|
|
|
|
intersection_t += delta_t * -convert_float3(isless(intersection_t, 0));
|
|
|
|
|
|
|
|
|
|
// REFLECTION
|
|
|
|
|
} else if (voxel_data == 6 && !shadow_ray) {
|
|
|
|
|
|
|
|
|
|
voxel_color.xyz += (float3)read_imagef(
|
|
|
|
|
texture_atlas,
|
|
|
|
|
convert_int2(tile_face_position * convert_float2(*atlas_dim / *tile_dim)) +
|
|
|
|
|
convert_int2((float2)(3, 4) * convert_float2(*atlas_dim / *tile_dim))
|
|
|
|
|
).xyz/4;
|
|
|
|
|
|
|
|
|
|
voxel_color.w -= 0.0f;
|
|
|
|
|
|
|
|
|
|
float3 hit_pos = convert_float3(voxel) + face_position;
|
|
|
|
|
ray_dir *= sign;
|
|
|
|
|
if (any(ray_dir == zeroed_float3))
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
voxel -= voxel_step * face_mask;
|
|
|
|
|
voxel_step = ( -1, -1, -1 ) * (ray_dir > 0) - (ray_dir < 0);
|
|
|
|
|
|
|
|
|
|
delta_t = fabs(1.0f / ray_dir);
|
|
|
|
|
intersection_t = delta_t * ((hit_pos)-floor(hit_pos)) * convert_float3(voxel_step);
|
|
|
|
|
intersection_t += delta_t * -convert_float3(isless(intersection_t, 0));
|
|
|
|
|
|
|
|
|
|
bounce_count += 1;
|
|
|
|
|
|
|
|
|
|
// SHADOW RAY HIT
|
|
|
|
|
} else {
|
|
|
|
|
color_accumulator.w = 0.1f;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// At the bottom of the while loop, add one to the distance ticker
|
|
|
|
|
distance_traveled++;
|
|
|
|
|