Changed to non branching algo, sped up a good 30-50 ms at the current max

ray dist. Also changed bounds checking a little, not sure if it's faster
master
MitchellHansen 8 years ago
parent 160756186d
commit 6f5d2b2f6f

@ -8,21 +8,15 @@ class Map {
public:
Map(sf::Vector3i dim) {
list = new char[dim.x * dim.y * dim.z];
for (int i = 0; i < dim.x * dim.y * dim.x; i++) {
list[i] = 0;
}
for (int x = 0; x < dim.x; x++) {
for (int y = 0; y < dim.y; y++) {
for (int z = 0; z < dim.z; z++) {
if (dim.z < 30) {
list[x + dim.x * (y + dim.z * z)] = 3;
}
else if (rand() % 1000 < 1)
//for (int i = 0; i < dim.x * dim.y * dim.x; i++) {
// list[i] = 0;
//}
for (int x = 0; x < dim.x / 10; x++) {
for (int y = 0; y < dim.y / 10; y++) {
for (int z = 0; z < dim.z / 10; z++) {
if (rand() % 1000 < 1)
list[x + dim.x * (y + dim.z * z)] = rand() % 6;
else
list[x + dim.x * (y + dim.z * z)] = 0;
}
}
}

@ -19,6 +19,10 @@ public:
}
void frame(double delta_time){
if (frame_count == 100){
frame_count = 0;
fps_average = 0;
}
frame_count++;
fps_average += (delta_time - fps_average) / frame_count;
}

@ -73,67 +73,64 @@ __kernel void min_kern(
int face = -1;
// X:0, Y:1, Z:2
int3 mask = { 0, 0, 0 };
// Andrew Woo's raycasting algo
do {
if ((intersection_t.x) < (intersection_t.y)) {
if ((intersection_t.x) < (intersection_t.z)) {
face = 0;
voxel.x += voxel_step.x;
intersection_t.x = intersection_t.x + delta_t.x;
} else {
face = 2;
voxel.z += voxel_step.z;
intersection_t.z = intersection_t.z + delta_t.z;
}
} else {
if ((intersection_t.y) < (intersection_t.z)) {
face = 1;
voxel.y += voxel_step.y;
intersection_t.y = intersection_t.y + delta_t.y;
} else {
face = 2;
voxel.z += voxel_step.z;
intersection_t.z = intersection_t.z + delta_t.z;
}
}
mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
float3 thing = delta_t * fabs(convert_float3(mask.xyz));
intersection_t += delta_t * fabs(convert_float3(mask.xyz));
voxel.xyz += voxel_step.xyz * mask.xyz;
// If the ray went out of bounds
if (voxel.z >= map_dim->z) {
write_imagef(image, pixel, (float4)(.5, .50, .00, 1));
return;
}
if (voxel.x >= map_dim->x) {
write_imagef(image, pixel, (float4)(.00, .00, .99, 1));
return;
}
if (voxel.y >= map_dim->x) {
write_imagef(image, pixel, (float4)(.00, .44, .00, 1));
return;
}
if (voxel.x < 0) {
write_imagef(image, pixel, (float4)(.99, .00, .99, 1));
return;
}
if (voxel.y < 0) {
write_imagef(image, pixel, (float4)(.99, .99, .00, 1));
return;
}
if (voxel.z < 0) {
write_imagef(image, pixel, (float4)(.00, .99, .99, 1));
return;
}
int3 overshoot = voxel.xyz <= map_dim->xyz;
int3 undershoot = voxel > 0;
//if (id == 240000)
// printf("%i, %i, %i\n", overshoot.x, overshoot.y, overshoot.z);
//if (id == 240000)
// printf("%i, %i, %i\n", undershoot.x, undershoot.y, undershoot.z);
if (overshoot.x == 0|| overshoot.y == 0 || overshoot.z == 0){
write_imagef(image, pixel, (float4)(.50 * abs(overshoot.x), .50 * abs(overshoot.y), .50 * abs(overshoot.z), 1));
return;
}
if (undershoot.x == 0 || undershoot.y == 0 || undershoot.z == 0) {
write_imagef(image, pixel, (float4)(.1 * abs(undershoot.x), .80 * abs(undershoot.y), .20 * abs(undershoot.z), 1));
return;
}
//if (voxel.x >= map_dim->x) {
// write_imagef(image, pixel, (float4)(.00, .00, .99, 1));
// return;
//}
//if (voxel.y >= map_dim->x) {
// write_imagef(image, pixel, (float4)(.00, .44, .00, 1));
// return;
//}
//if (voxel.x < 0) {
// write_imagef(image, pixel, (float4)(.99, .00, .99, 1));
// return;
//}
//if (voxel.y < 0) {
// write_imagef(image, pixel, (float4)(.99, .99, .00, 1));
// return;
//}
//if (voxel.z < 0) {
// write_imagef(image, pixel, (float4)(.00, .99, .99, 1));
// return;
//}
// If we hit a voxel
int index = voxel.x + map_dim->x * (voxel.y + map_dim->z * voxel.z);
int voxel_data = map[index];
//if (id == 240000)
//printf("%i, %i, %i\n", voxel.x, voxel.y, voxel.z);
if (voxel_data != 0) {
switch (voxel_data) {

@ -62,20 +62,22 @@ sf::Texture window_texture;
int main() {
sf::RenderWindow window(sf::VideoMode(WINDOW_X, WINDOW_Y), "SFML");
sf::RenderWindow window(sf::VideoMode(WINDOW_X, WINDOW_Y), "SFML");
sf::Sprite s;
sf::Texture t;
sf::Sprite s;
sf::Texture t;
CL_Wrapper c;
CL_Wrapper c;
query_platform_devices();
c.acquire_platform_and_device();
c.create_shared_context();
c.create_command_queue();
c.acquire_platform_and_device();
c.create_shared_context();
c.create_command_queue();
//c.compile_kernel("../kernels/kernel.cl", true, "hello");
c.compile_kernel("../kernels/minimal_kernel.cl", true, "min_kern");
//c.compile_kernel("../kernels/kernel.cl", true, "hello");
if (c.compile_kernel("../kernels/minimal_kernel.cl", true, "min_kern") < 0) {
std::cin.get();
}
std::cout << "map...";
sf::Vector3i map_dim(MAP_X, MAP_Y, MAP_Z);
@ -252,6 +254,14 @@ int main() {
// If the user tries to exit the application via the GUI
if (event.type == sf::Event::Closed)
window.close();
if (event.type == sf::Event::KeyPressed) {
if (event.key.code == sf::Keyboard::Space) {
if (mouse_enabled)
mouse_enabled = false;
else
mouse_enabled = true;
}
}
}
cam_vec.x = 0;
@ -289,15 +299,16 @@ int main() {
cam_vec.y = -0.1f;
}
deltas = fixed - sf::Mouse::getPosition();
if (deltas != sf::Vector2i(0, 0) && mouse_enabled == true) {
if (mouse_enabled) {
deltas = fixed - sf::Mouse::getPosition();
if (deltas != sf::Vector2i(0, 0) && mouse_enabled == true) {
// Mouse movement
sf::Mouse::setPosition(fixed);
cam_dir.y -= deltas.y / 300.0f;
cam_dir.z -= deltas.x / 300.0f;
// Mouse movement
sf::Mouse::setPosition(fixed);
cam_dir.y -= deltas.y / 300.0f;
cam_dir.z -= deltas.x / 300.0f;
}
}
cam_pos.x += cam_vec.x / 1.0;
cam_pos.y += cam_vec.y / 1.0;
cam_pos.z += cam_vec.z / 1.0;
@ -355,6 +366,7 @@ int main() {
fps.draw(&window);
window.display();
//std::cin.get();
}
return 0;
}

Loading…
Cancel
Save