Cut down a few of the compiler warnings, refactored the octree into its own file. Refactored all map items into their own subfolder
parent
2ad7383406
commit
7c534500f6
@ -1,120 +0,0 @@
|
||||
#pragma once
|
||||
#include <SFML/System/Vector3.hpp>
|
||||
#include <SFML/System/Vector2.hpp>
|
||||
#include <SFML/Graphics/Color.hpp>
|
||||
#include <iostream>
|
||||
#include <list>
|
||||
#include <random>
|
||||
#include <iostream>
|
||||
#include <functional>
|
||||
#include <cmath>
|
||||
#include <deque>
|
||||
#include <unordered_map>
|
||||
#include <bitset>
|
||||
#include <cstring>
|
||||
#include <queue>
|
||||
#include "util.hpp"
|
||||
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
|
||||
#define CHUNK_DIM 32
|
||||
#define OCT_DIM 32
|
||||
|
||||
struct XYZHasher {
|
||||
std::size_t operator()(const sf::Vector3i& k) const {
|
||||
return ((std::hash<int>()(k.x)
|
||||
^ (std::hash<int>()(k.y) << 1)) >> 1)
|
||||
^ (std::hash<int>()(k.z) << 1);
|
||||
}
|
||||
};
|
||||
|
||||
struct oct_state {
|
||||
|
||||
int parent_stack_position = 0;
|
||||
uint64_t parent_stack[32] = { 0 };
|
||||
|
||||
uint8_t scale = 0;
|
||||
uint8_t idx_stack[32] = { 0 };
|
||||
|
||||
uint64_t current_descriptor;
|
||||
|
||||
};
|
||||
|
||||
class Octree {
|
||||
public:
|
||||
Octree();
|
||||
~Octree() {};
|
||||
|
||||
uint64_t *blob = new uint64_t[100000];
|
||||
|
||||
uint64_t root_index = 0;
|
||||
uint64_t stack_pos = 0x8000;
|
||||
uint64_t global_pos = 0;
|
||||
|
||||
uint64_t copy_to_stack(std::vector<uint64_t> children);
|
||||
|
||||
// With a position and the head of the stack. Traverse down the voxel hierarchy to find
|
||||
// the IDX and stack position of the highest resolution (maybe set resolution?) oct
|
||||
bool get_voxel(sf::Vector3i position);
|
||||
|
||||
void print_block(int block_pos);
|
||||
|
||||
private:
|
||||
|
||||
// (X, Y, Z) mask for the idx
|
||||
const uint8_t idx_set_x_mask = 0x1;
|
||||
const uint8_t idx_set_y_mask = 0x2;
|
||||
const uint8_t idx_set_z_mask = 0x4;
|
||||
|
||||
// Mask for
|
||||
const uint8_t mask_8[8] = {
|
||||
0x1, 0x2, 0x4, 0x8,
|
||||
0x10, 0x20, 0x40, 0x80
|
||||
};
|
||||
|
||||
const uint8_t count_mask_8[8]{
|
||||
0x1, 0x3, 0x7, 0xF,
|
||||
0x1F, 0x3F, 0x7F, 0xFF
|
||||
};
|
||||
|
||||
const uint64_t child_pointer_mask = 0x0000000000007fff;
|
||||
const uint64_t far_bit_mask = 0x8000;
|
||||
const uint64_t valid_mask = 0xFF0000;
|
||||
const uint64_t leaf_mask = 0xFF000000;
|
||||
const uint64_t contour_pointer_mask = 0xFFFFFF00000000;
|
||||
const uint64_t contour_mask = 0xFF00000000000000;
|
||||
|
||||
};
|
||||
|
||||
|
||||
class Map {
|
||||
public:
|
||||
|
||||
Map(sf::Vector3i position);
|
||||
|
||||
void generate_octree();
|
||||
|
||||
void setVoxel(sf::Vector3i position, int val);
|
||||
|
||||
char getVoxelFromOctree(sf::Vector3i position);
|
||||
|
||||
bool getVoxel(sf::Vector3i pos);
|
||||
Octree a;
|
||||
|
||||
void test_map();
|
||||
|
||||
private:
|
||||
|
||||
// ======= DEBUG ===========
|
||||
int counter = 0;
|
||||
std::stringstream output_stream;
|
||||
// =========================
|
||||
|
||||
uint64_t generate_children(sf::Vector3i pos, int dim);
|
||||
|
||||
char* voxel_data = new char[OCT_DIM * OCT_DIM * OCT_DIM];
|
||||
|
||||
};
|
||||
|
||||
|
@ -0,0 +1,49 @@
|
||||
#pragma once
|
||||
#include <SFML/System/Vector3.hpp>
|
||||
#include <functional>
|
||||
#include <bitset>
|
||||
#include <queue>
|
||||
#include "util.hpp"
|
||||
#include "map/Octree.h"
|
||||
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
|
||||
struct XYZHasher {
|
||||
std::size_t operator()(const sf::Vector3i& k) const {
|
||||
return ((std::hash<int>()(k.x)
|
||||
^ (std::hash<int>()(k.y) << 1)) >> 1)
|
||||
^ (std::hash<int>()(k.z) << 1);
|
||||
}
|
||||
};
|
||||
|
||||
class Map {
|
||||
public:
|
||||
|
||||
Map(uint32_t dimensions);
|
||||
|
||||
void generate_octree();
|
||||
|
||||
void setVoxel(sf::Vector3i position, int val);
|
||||
|
||||
bool getVoxelFromOctree(sf::Vector3i position);
|
||||
|
||||
bool getVoxel(sf::Vector3i pos);
|
||||
Octree a;
|
||||
|
||||
void test_map();
|
||||
|
||||
private:
|
||||
|
||||
// ======= DEBUG ===========
|
||||
int counter = 0;
|
||||
std::stringstream output_stream;
|
||||
// =========================
|
||||
|
||||
uint64_t generate_children(sf::Vector3i pos, int dim);
|
||||
|
||||
char* voxel_data;
|
||||
|
||||
};
|
||||
|
||||
|
@ -0,0 +1,52 @@
|
||||
#pragma once
|
||||
#include <SFML/System/Vector3.hpp>
|
||||
#include <vector>
|
||||
#include "util.hpp"
|
||||
|
||||
#define OCT_DIM 32
|
||||
|
||||
class Octree {
|
||||
public:
|
||||
Octree();
|
||||
~Octree() {};
|
||||
|
||||
uint64_t *blob = new uint64_t[100000];
|
||||
|
||||
uint64_t root_index = 0;
|
||||
uint64_t stack_pos = 0x8000;
|
||||
uint64_t global_pos = 0;
|
||||
|
||||
uint64_t copy_to_stack(std::vector<uint64_t> children);
|
||||
|
||||
// With a position and the head of the stack. Traverse down the voxel hierarchy to find
|
||||
// the IDX and stack position of the highest resolution (maybe set resolution?) oct
|
||||
bool get_voxel(sf::Vector3i position);
|
||||
|
||||
void print_block(int block_pos);
|
||||
|
||||
private:
|
||||
|
||||
// (X, Y, Z) mask for the idx
|
||||
const uint8_t idx_set_x_mask = 0x1;
|
||||
const uint8_t idx_set_y_mask = 0x2;
|
||||
const uint8_t idx_set_z_mask = 0x4;
|
||||
|
||||
// Mask for
|
||||
const uint8_t mask_8[8] = {
|
||||
0x1, 0x2, 0x4, 0x8,
|
||||
0x10, 0x20, 0x40, 0x80
|
||||
};
|
||||
|
||||
const uint8_t count_mask_8[8]{
|
||||
0x1, 0x3, 0x7, 0xF,
|
||||
0x1F, 0x3F, 0x7F, 0xFF
|
||||
};
|
||||
|
||||
const uint64_t child_pointer_mask = 0x0000000000007fff;
|
||||
const uint64_t far_bit_mask = 0x8000;
|
||||
const uint64_t valid_mask = 0xFF0000;
|
||||
const uint64_t leaf_mask = 0xFF000000;
|
||||
const uint64_t contour_pointer_mask = 0xFFFFFF00000000;
|
||||
const uint64_t contour_mask = 0xFF00000000000000;
|
||||
|
||||
};
|
@ -1,411 +0,0 @@
|
||||
#include "Map.h"
|
||||
|
||||
void SetBit(int position, char* c) {
|
||||
*c |= (uint64_t)1 << position;
|
||||
}
|
||||
|
||||
void FlipBit(int position, char* c) {
|
||||
*c ^= (uint64_t)1 << position;
|
||||
}
|
||||
|
||||
int GetBit(int position, char* c) {
|
||||
return (*c >> position) & (uint64_t)1;
|
||||
}
|
||||
|
||||
void SetBit(int position, uint64_t* c) {
|
||||
*c |= (uint64_t)1 << position;
|
||||
}
|
||||
|
||||
void FlipBit(int position, uint64_t* c) {
|
||||
*c ^= (uint64_t)1 << position;
|
||||
}
|
||||
|
||||
int GetBit(int position, uint64_t* c) {
|
||||
return (*c >> position) & (uint64_t)1;
|
||||
}
|
||||
|
||||
bool CheckLeafSign(const uint64_t descriptor) {
|
||||
|
||||
uint64_t valid_mask = 0xFF0000;
|
||||
|
||||
// Return true if all 1's, false if contiguous 0's
|
||||
if ((descriptor & valid_mask) == valid_mask) {
|
||||
return true;
|
||||
}
|
||||
if ((descriptor & valid_mask) == 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Error out, something funky
|
||||
abort();
|
||||
}
|
||||
|
||||
bool CheckContiguousValid(const uint64_t c) {
|
||||
uint64_t bitmask = 0xFF0000;
|
||||
return (c & bitmask) == bitmask;
|
||||
}
|
||||
|
||||
|
||||
|
||||
bool IsLeaf(const uint64_t descriptor) {
|
||||
|
||||
uint64_t leaf_mask = 0xFF000000;
|
||||
uint64_t valid_mask = 0xFF0000;
|
||||
|
||||
// Check for contiguous valid values of either 0's or 1's
|
||||
if (((descriptor & valid_mask) == valid_mask) || ((descriptor & valid_mask) == 0)) {
|
||||
|
||||
// Check for a full leaf mask
|
||||
// Only if valid and leaf are contiguous, then it's a leaf
|
||||
if ((descriptor & leaf_mask) == leaf_mask)
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
}
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
Map::Map(sf::Vector3i position) {
|
||||
|
||||
srand(time(NULL));
|
||||
|
||||
for (int i = 0; i < OCT_DIM * OCT_DIM * OCT_DIM; i++) {
|
||||
if (rand() % 25 < 2)
|
||||
voxel_data[i] = 1;
|
||||
else
|
||||
voxel_data[i] = 1;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
uint64_t Map::generate_children(sf::Vector3i pos, int voxel_scale) {
|
||||
|
||||
|
||||
// The 8 subvoxel coords starting from the 1th direction, the direction of the origin of the 3d grid
|
||||
// XY, Z++, XY
|
||||
std::vector<sf::Vector3i> v = {
|
||||
sf::Vector3i(pos.x , pos.y , pos.z),
|
||||
sf::Vector3i(pos.x + voxel_scale, pos.y , pos.z),
|
||||
sf::Vector3i(pos.x , pos.y + voxel_scale, pos.z),
|
||||
sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z),
|
||||
sf::Vector3i(pos.x , pos.y , pos.z + voxel_scale),
|
||||
sf::Vector3i(pos.x + voxel_scale, pos.y , pos.z + voxel_scale),
|
||||
sf::Vector3i(pos.x , pos.y + voxel_scale, pos.z + voxel_scale),
|
||||
sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z + voxel_scale)
|
||||
};
|
||||
|
||||
// If we hit the 1th voxel scale then we need to query the 3D grid
|
||||
// and get the voxel at that position. I assume in the future when I
|
||||
// want to do chunking / loading of raw data I can edit the voxel access
|
||||
if (voxel_scale == 1) {
|
||||
|
||||
//
|
||||
uint64_t child_descriptor = 0;
|
||||
|
||||
// Setting the individual valid mask bits
|
||||
// These don't bound check, should they?
|
||||
for (int i = 0; i < v.size(); i++) {
|
||||
if (getVoxel(v.at(i)))
|
||||
SetBit(i + 16, &child_descriptor);
|
||||
}
|
||||
|
||||
// We are querying leafs, so we need to fill the leaf mask
|
||||
child_descriptor |= 0xFF000000;
|
||||
|
||||
// This is where contours
|
||||
// The CP will be left blank, contours will be added maybe
|
||||
return child_descriptor;
|
||||
|
||||
}
|
||||
|
||||
// Init a blank child descriptor for this node
|
||||
uint64_t child_descriptor = 0;
|
||||
|
||||
std::vector<uint64_t> descriptor_array;
|
||||
|
||||
// Generate down the recursion, returning the descriptor of the current node
|
||||
for (int i = 0; i < v.size(); i++) {
|
||||
|
||||
uint64_t child = 0;
|
||||
|
||||
// Get the child descriptor from the i'th to 8th subvoxel
|
||||
child = generate_children(v.at(i), voxel_scale / 2);
|
||||
|
||||
// =========== Debug ===========
|
||||
PrettyPrintUINT64(child, &output_stream);
|
||||
output_stream << " " << voxel_scale << " " << counter++ << std::endl;
|
||||
// =============================
|
||||
|
||||
// If the child is a leaf (contiguous) of non-valid values
|
||||
if (IsLeaf(child) && !CheckLeafSign(child)) {
|
||||
// Leave the valid mask 0, set leaf mask to 1
|
||||
SetBit(i + 16 + 8, &child_descriptor);
|
||||
}
|
||||
|
||||
// If the child is valid and not a leaf
|
||||
else {
|
||||
|
||||
// Set the valid mask, and add it to the descriptor array
|
||||
SetBit(i + 16, &child_descriptor);
|
||||
descriptor_array.push_back(child);
|
||||
}
|
||||
}
|
||||
|
||||
// Any free space between the child descriptors must be added here in order to
|
||||
// interlace them and allow the memory handler to work correctly.
|
||||
|
||||
// Copy the children to the stack and set the child_descriptors pointer to the correct value
|
||||
child_descriptor |= a.copy_to_stack(descriptor_array);
|
||||
|
||||
// Free space may also be allocated here as well
|
||||
|
||||
// Return the node up the stack
|
||||
return child_descriptor;
|
||||
}
|
||||
|
||||
void Map::generate_octree() {
|
||||
|
||||
// Launch the recursive generator at (0,0,0) as the first point
|
||||
// and the octree dimension as the initial block size
|
||||
uint64_t root_node = generate_children(sf::Vector3i(0, 0, 0), OCT_DIM/2);
|
||||
uint64_t tmp = 0;
|
||||
|
||||
// ========= DEBUG ==============
|
||||
PrettyPrintUINT64(root_node, &output_stream);
|
||||
output_stream << " " << OCT_DIM << " " << counter++ << std::endl;
|
||||
// ==============================
|
||||
|
||||
a.root_index = a.copy_to_stack(std::vector<uint64_t>{root_node});
|
||||
|
||||
// Dump the debug log
|
||||
DumpLog(&output_stream, "raw_output.txt");
|
||||
|
||||
}
|
||||
|
||||
void Map::setVoxel(sf::Vector3i world_position, int val) {
|
||||
|
||||
}
|
||||
|
||||
char Map::getVoxelFromOctree(sf::Vector3i position)
|
||||
{
|
||||
return a.get_voxel(position);
|
||||
}
|
||||
|
||||
bool Map::getVoxel(sf::Vector3i pos){
|
||||
|
||||
if (voxel_data[pos.x + OCT_DIM * (pos.y + OCT_DIM * pos.z)]) {
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
void Map::test_map() {
|
||||
|
||||
std::cout << "Validating map..." << std::endl;
|
||||
|
||||
for (int x = 0; x < OCT_DIM; x++) {
|
||||
for (int y = 0; y < OCT_DIM; y++) {
|
||||
for (int z = 0; z < OCT_DIM; z++) {
|
||||
|
||||
sf::Vector3i pos(x, y, z);
|
||||
|
||||
bool arr1 = getVoxel(pos);
|
||||
bool arr2 = getVoxelFromOctree(pos);
|
||||
|
||||
if (arr1 != arr2) {
|
||||
std::cout << "X: " << pos.x << "Y: " << pos.y << "Z: " << pos.z << std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Done" << std::endl;
|
||||
|
||||
sf::Clock timer;
|
||||
|
||||
timer.restart();
|
||||
|
||||
for (int x = 0; x < OCT_DIM; x++) {
|
||||
for (int y = 0; y < OCT_DIM; y++) {
|
||||
for (int z = 0; z < OCT_DIM; z++) {
|
||||
|
||||
sf::Vector3i pos(x, y, z);
|
||||
|
||||
bool arr1 = getVoxel(pos);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Array linear xyz access : ";
|
||||
std::cout << timer.restart().asMicroseconds() << " microseconds" << std::endl;
|
||||
|
||||
for (int x = 0; x < OCT_DIM; x++) {
|
||||
for (int y = 0; y < OCT_DIM; y++) {
|
||||
for (int z = 0; z < OCT_DIM; z++) {
|
||||
|
||||
sf::Vector3i pos(x, y, z);
|
||||
|
||||
bool arr2 = getVoxelFromOctree(pos);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Octree linear xyz access : ";
|
||||
std::cout << timer.restart().asMicroseconds() << " microseconds" << std::endl;
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
Octree::Octree() {
|
||||
|
||||
// initialize the first stack block
|
||||
|
||||
for (int i = 0; i < 0x8000; i++) {
|
||||
blob[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
uint64_t Octree::copy_to_stack(std::vector<uint64_t> children) {
|
||||
|
||||
// Check for the 15 bit boundry
|
||||
if (stack_pos - children.size() > stack_pos) {
|
||||
global_pos = stack_pos;
|
||||
stack_pos = 0x8000;
|
||||
}
|
||||
else {
|
||||
stack_pos -= children.size();
|
||||
}
|
||||
|
||||
// Check for the far bit
|
||||
|
||||
memcpy(&blob[stack_pos + global_pos], children.data(), children.size() * sizeof(uint64_t));
|
||||
|
||||
// Return the bitmask encoding the index of that value
|
||||
// If we tripped the far bit, allocate a far index to the stack and place
|
||||
// it at the bottom of the child_descriptor node level array
|
||||
// And then shift the far bit to 1
|
||||
|
||||
// If not, shift the index to its correct place
|
||||
return stack_pos;
|
||||
}
|
||||
|
||||
bool Octree::get_voxel(sf::Vector3i position) {
|
||||
|
||||
// Struct that holds the state necessary to continue the traversal from the found voxel
|
||||
oct_state state;
|
||||
|
||||
// push the root node to the parent stack
|
||||
uint64_t head = blob[root_index];
|
||||
state.parent_stack[state.parent_stack_position] = head;
|
||||
|
||||
// Set our initial dimension and the position at the corner of the oct to keep track of our position
|
||||
int dimension = OCT_DIM;
|
||||
sf::Vector3i quad_position(0, 0, 0);
|
||||
|
||||
// While we are not at the required resolution
|
||||
// Traverse down by setting the valid/leaf mask to the subvoxel
|
||||
// Check to see if it is valid
|
||||
// Yes?
|
||||
// Check to see if it is a leaf
|
||||
// No? Break
|
||||
// Yes? Scale down to the next hierarchy, push the parent to the stack
|
||||
//
|
||||
// No?
|
||||
// Break
|
||||
while (dimension > 1) {
|
||||
|
||||
// So we can be a little bit tricky here and increment our
|
||||
// array index that holds our masks as we build the idx.
|
||||
// Adding 1 for X, 2 for Y, and 4 for Z
|
||||
int mask_index = 0;
|
||||
|
||||
|
||||
// Do the logic steps to find which sub oct we step down into
|
||||
if (position.x >= (dimension / 2) + quad_position.x) {
|
||||
|
||||
// Set our voxel position to the (0,0) of the correct oct
|
||||
quad_position.x += (dimension / 2);
|
||||
|
||||
// increment the mask index and mentioned above
|
||||
mask_index += 1;
|
||||
|
||||
// Set the idx to represent the move
|
||||
state.idx_stack[state.scale] |= idx_set_x_mask;
|
||||
|
||||
}
|
||||
if (position.y >= (dimension / 2) + quad_position.y) {
|
||||
|
||||
quad_position.y |= (dimension / 2);
|
||||
|
||||
mask_index += 2;
|
||||
|
||||
state.idx_stack[state.scale] ^= idx_set_y_mask;
|
||||
|
||||
}
|
||||
if (position.z >= (dimension / 2) + quad_position.z) {
|
||||
|
||||
quad_position.z += (dimension / 2);
|
||||
|
||||
mask_index += 4;
|
||||
|
||||
state.idx_stack[state.scale] |= idx_set_z_mask;
|
||||
|
||||
}
|
||||
|
||||
// Check to see if we are on a valid oct
|
||||
if ((head >> 16) & mask_8[mask_index]) {
|
||||
|
||||
// Check to see if it is a leaf
|
||||
if ((head >> 24) & mask_8[mask_index]) {
|
||||
|
||||
// If it is, then we cannot traverse further as CP's won't have been generated
|
||||
return true;
|
||||
}
|
||||
|
||||
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
|
||||
state.scale++;
|
||||
dimension /= 2;
|
||||
|
||||
// Count the number of valid octs that come before and add it to the index to get the position
|
||||
// Negate it by one as it counts itself
|
||||
int count = count_bits((uint8_t)(head >> 16) & count_mask_8[mask_index]) - 1;
|
||||
|
||||
// access the element at which head points to and then add the specified number of indices
|
||||
// to get to the correct child descriptor
|
||||
head = blob[(head & child_pointer_mask) + count];
|
||||
|
||||
// Increment the parent stack position and put the new oct node as the parent
|
||||
state.parent_stack_position++;
|
||||
state.parent_stack[state.parent_stack_position] = head;
|
||||
|
||||
}
|
||||
else {
|
||||
// If the oct was not valid, then no CP's exists any further
|
||||
// This implicitly says that if it's non-valid then it must be a leaf!!
|
||||
|
||||
// It appears that the traversal is now working but I need
|
||||
// to focus on how to now take care of the end condition.
|
||||
// Currently it adds the last parent on the second to lowest
|
||||
// oct CP. Not sure if thats correct
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void Octree::print_block(int block_pos) {
|
||||
|
||||
std::stringstream sss;
|
||||
for (int i = block_pos; i < (int)pow(2, 15); i++) {
|
||||
PrettyPrintUINT64(blob[i], &sss);
|
||||
sss << "\n";
|
||||
}
|
||||
DumpLog(&sss, "raw_data.txt");
|
||||
|
||||
}
|
||||
|
@ -0,0 +1,197 @@
|
||||
#include "map/Map.h"
|
||||
|
||||
|
||||
Map::Map(uint32_t dimensions) {
|
||||
|
||||
srand(time(nullptr));
|
||||
|
||||
voxel_data = new char[dimensions * dimensions * dimensions];
|
||||
|
||||
for (uint64_t i = 0; i < dimensions * dimensions * dimensions; i++) {
|
||||
if (rand() % 25 < 2)
|
||||
voxel_data[i] = 1;
|
||||
else
|
||||
voxel_data[i] = 1;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
uint64_t Map::generate_children(sf::Vector3i pos, int voxel_scale) {
|
||||
|
||||
|
||||
// The 8 subvoxel coords starting from the 1th direction, the direction of the origin of the 3d grid
|
||||
// XY, Z++, XY
|
||||
std::vector<sf::Vector3i> v = {
|
||||
sf::Vector3i(pos.x , pos.y , pos.z),
|
||||
sf::Vector3i(pos.x + voxel_scale, pos.y , pos.z),
|
||||
sf::Vector3i(pos.x , pos.y + voxel_scale, pos.z),
|
||||
sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z),
|
||||
sf::Vector3i(pos.x , pos.y , pos.z + voxel_scale),
|
||||
sf::Vector3i(pos.x + voxel_scale, pos.y , pos.z + voxel_scale),
|
||||
sf::Vector3i(pos.x , pos.y + voxel_scale, pos.z + voxel_scale),
|
||||
sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z + voxel_scale)
|
||||
};
|
||||
|
||||
// If we hit the 1th voxel scale then we need to query the 3D grid
|
||||
// and get the voxel at that position. I assume in the future when I
|
||||
// want to do chunking / loading of raw data I can edit the voxel access
|
||||
if (voxel_scale == 1) {
|
||||
|
||||
//
|
||||
uint64_t child_descriptor = 0;
|
||||
|
||||
// Setting the individual valid mask bits
|
||||
// These don't bound check, should they?
|
||||
for (int i = 0; i < v.size(); i++) {
|
||||
if (getVoxel(v.at(i)))
|
||||
SetBit(i + 16, &child_descriptor);
|
||||
}
|
||||
|
||||
// We are querying leafs, so we need to fill the leaf mask
|
||||
child_descriptor |= 0xFF000000;
|
||||
|
||||
// This is where contours
|
||||
// The CP will be left blank, contours will be added maybe
|
||||
return child_descriptor;
|
||||
|
||||
}
|
||||
|
||||
// Init a blank child descriptor for this node
|
||||
uint64_t child_descriptor = 0;
|
||||
|
||||
std::vector<uint64_t> descriptor_array;
|
||||
|
||||
// Generate down the recursion, returning the descriptor of the current node
|
||||
for (int i = 0; i < v.size(); i++) {
|
||||
|
||||
uint64_t child = 0;
|
||||
|
||||
// Get the child descriptor from the i'th to 8th subvoxel
|
||||
child = generate_children(v.at(i), voxel_scale / 2);
|
||||
|
||||
// =========== Debug ===========
|
||||
PrettyPrintUINT64(child, &output_stream);
|
||||
output_stream << " " << voxel_scale << " " << counter++ << std::endl;
|
||||
// =============================
|
||||
|
||||
// If the child is a leaf (contiguous) of non-valid values
|
||||
if (IsLeaf(child) && !CheckLeafSign(child)) {
|
||||
// Leave the valid mask 0, set leaf mask to 1
|
||||
SetBit(i + 16 + 8, &child_descriptor);
|
||||
}
|
||||
|
||||
// If the child is valid and not a leaf
|
||||
else {
|
||||
|
||||
// Set the valid mask, and add it to the descriptor array
|
||||
SetBit(i + 16, &child_descriptor);
|
||||
descriptor_array.push_back(child);
|
||||
}
|
||||
}
|
||||
|
||||
// Any free space between the child descriptors must be added here in order to
|
||||
// interlace them and allow the memory handler to work correctly.
|
||||
|
||||
// Copy the children to the stack and set the child_descriptors pointer to the correct value
|
||||
child_descriptor |= a.copy_to_stack(descriptor_array);
|
||||
|
||||
// Free space may also be allocated here as well
|
||||
|
||||
// Return the node up the stack
|
||||
return child_descriptor;
|
||||
}
|
||||
|
||||
void Map::generate_octree() {
|
||||
|
||||
// Launch the recursive generator at (0,0,0) as the first point
|
||||
// and the octree dimension as the initial block size
|
||||
uint64_t root_node = generate_children(sf::Vector3i(0, 0, 0), OCT_DIM/2);
|
||||
uint64_t tmp = 0;
|
||||
|
||||
// ========= DEBUG ==============
|
||||
PrettyPrintUINT64(root_node, &output_stream);
|
||||
output_stream << " " << OCT_DIM << " " << counter++ << std::endl;
|
||||
// ==============================
|
||||
|
||||
a.root_index = a.copy_to_stack(std::vector<uint64_t>{root_node});
|
||||
|
||||
// Dump the debug log
|
||||
DumpLog(&output_stream, "raw_output.txt");
|
||||
|
||||
}
|
||||
|
||||
void Map::setVoxel(sf::Vector3i world_position, int val) {
|
||||
|
||||
}
|
||||
|
||||
bool Map::getVoxelFromOctree(sf::Vector3i position)
|
||||
{
|
||||
return a.get_voxel(position);
|
||||
}
|
||||
|
||||
bool Map::getVoxel(sf::Vector3i pos){
|
||||
|
||||
if (voxel_data[pos.x + OCT_DIM * (pos.y + OCT_DIM * pos.z)]) {
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
void Map::test_map() {
|
||||
|
||||
std::cout << "Validating map..." << std::endl;
|
||||
|
||||
for (int x = 0; x < OCT_DIM; x++) {
|
||||
for (int y = 0; y < OCT_DIM; y++) {
|
||||
for (int z = 0; z < OCT_DIM; z++) {
|
||||
|
||||
sf::Vector3i pos(x, y, z);
|
||||
|
||||
bool arr1 = getVoxel(pos);
|
||||
bool arr2 = getVoxelFromOctree(pos);
|
||||
|
||||
if (arr1 != arr2) {
|
||||
std::cout << "X: " << pos.x << "Y: " << pos.y << "Z: " << pos.z << std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Done" << std::endl;
|
||||
|
||||
sf::Clock timer;
|
||||
|
||||
timer.restart();
|
||||
|
||||
for (int x = 0; x < OCT_DIM; x++) {
|
||||
for (int y = 0; y < OCT_DIM; y++) {
|
||||
for (int z = 0; z < OCT_DIM; z++) {
|
||||
|
||||
sf::Vector3i pos(x, y, z);
|
||||
|
||||
bool arr1 = getVoxel(pos);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Array linear xyz access : ";
|
||||
std::cout << timer.restart().asMicroseconds() << " microseconds" << std::endl;
|
||||
|
||||
for (int x = 0; x < OCT_DIM; x++) {
|
||||
for (int y = 0; y < OCT_DIM; y++) {
|
||||
for (int z = 0; z < OCT_DIM; z++) {
|
||||
|
||||
sf::Vector3i pos(x, y, z);
|
||||
|
||||
bool arr2 = getVoxelFromOctree(pos);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Octree linear xyz access : ";
|
||||
std::cout << timer.restart().asMicroseconds() << " microseconds" << std::endl;
|
||||
|
||||
}
|
||||
|
@ -0,0 +1,151 @@
|
||||
#include "map/Octree.h"
|
||||
|
||||
Octree::Octree() {
|
||||
|
||||
// initialize the first stack block
|
||||
|
||||
for (int i = 0; i < 0x8000; i++) {
|
||||
blob[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
uint64_t Octree::copy_to_stack(std::vector<uint64_t> children) {
|
||||
|
||||
// Check for the 15 bit boundry
|
||||
if (stack_pos - children.size() > stack_pos) {
|
||||
global_pos = stack_pos;
|
||||
stack_pos = 0x8000;
|
||||
}
|
||||
else {
|
||||
stack_pos -= children.size();
|
||||
}
|
||||
|
||||
// Check for the far bit
|
||||
|
||||
memcpy(&blob[stack_pos + global_pos], children.data(), children.size() * sizeof(uint64_t));
|
||||
|
||||
// Return the bitmask encoding the index of that value
|
||||
// If we tripped the far bit, allocate a far index to the stack and place
|
||||
// it at the bottom of the child_descriptor node level array
|
||||
// And then shift the far bit to 1
|
||||
|
||||
// If not, shift the index to its correct place
|
||||
return stack_pos;
|
||||
}
|
||||
|
||||
bool Octree::get_voxel(sf::Vector3i position) {
|
||||
|
||||
// Struct that holds the state necessary to continue the traversal from the found voxel
|
||||
oct_state state;
|
||||
|
||||
// push the root node to the parent stack
|
||||
uint64_t head = blob[root_index];
|
||||
state.parent_stack[state.parent_stack_position] = head;
|
||||
|
||||
// Set our initial dimension and the position at the corner of the oct to keep track of our position
|
||||
int dimension = OCT_DIM;
|
||||
sf::Vector3i quad_position(0, 0, 0);
|
||||
|
||||
// While we are not at the required resolution
|
||||
// Traverse down by setting the valid/leaf mask to the subvoxel
|
||||
// Check to see if it is valid
|
||||
// Yes?
|
||||
// Check to see if it is a leaf
|
||||
// No? Break
|
||||
// Yes? Scale down to the next hierarchy, push the parent to the stack
|
||||
//
|
||||
// No?
|
||||
// Break
|
||||
while (dimension > 1) {
|
||||
|
||||
// So we can be a little bit tricky here and increment our
|
||||
// array index that holds our masks as we build the idx.
|
||||
// Adding 1 for X, 2 for Y, and 4 for Z
|
||||
int mask_index = 0;
|
||||
|
||||
|
||||
// Do the logic steps to find which sub oct we step down into
|
||||
if (position.x >= (dimension / 2) + quad_position.x) {
|
||||
|
||||
// Set our voxel position to the (0,0) of the correct oct
|
||||
quad_position.x += (dimension / 2);
|
||||
|
||||
// increment the mask index and mentioned above
|
||||
mask_index += 1;
|
||||
|
||||
// Set the idx to represent the move
|
||||
state.idx_stack[state.scale] |= idx_set_x_mask;
|
||||
|
||||
}
|
||||
if (position.y >= (dimension / 2) + quad_position.y) {
|
||||
|
||||
quad_position.y |= (dimension / 2);
|
||||
|
||||
mask_index += 2;
|
||||
|
||||
state.idx_stack[state.scale] ^= idx_set_y_mask;
|
||||
|
||||
}
|
||||
if (position.z >= (dimension / 2) + quad_position.z) {
|
||||
|
||||
quad_position.z += (dimension / 2);
|
||||
|
||||
mask_index += 4;
|
||||
|
||||
state.idx_stack[state.scale] |= idx_set_z_mask;
|
||||
|
||||
}
|
||||
|
||||
// Check to see if we are on a valid oct
|
||||
if ((head >> 16) & mask_8[mask_index]) {
|
||||
|
||||
// Check to see if it is a leaf
|
||||
if ((head >> 24) & mask_8[mask_index]) {
|
||||
|
||||
// If it is, then we cannot traverse further as CP's won't have been generated
|
||||
return true;
|
||||
}
|
||||
|
||||
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
|
||||
state.scale++;
|
||||
dimension /= 2;
|
||||
|
||||
// Count the number of valid octs that come before and add it to the index to get the position
|
||||
// Negate it by one as it counts itself
|
||||
int count = count_bits((uint8_t)(head >> 16) & count_mask_8[mask_index]) - 1;
|
||||
|
||||
// access the element at which head points to and then add the specified number of indices
|
||||
// to get to the correct child descriptor
|
||||
head = blob[(head & child_pointer_mask) + count];
|
||||
|
||||
// Increment the parent stack position and put the new oct node as the parent
|
||||
state.parent_stack_position++;
|
||||
state.parent_stack[state.parent_stack_position] = head;
|
||||
|
||||
}
|
||||
else {
|
||||
// If the oct was not valid, then no CP's exists any further
|
||||
// This implicitly says that if it's non-valid then it must be a leaf!!
|
||||
|
||||
// It appears that the traversal is now working but I need
|
||||
// to focus on how to now take care of the end condition.
|
||||
// Currently it adds the last parent on the second to lowest
|
||||
// oct CP. Not sure if thats correct
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void Octree::print_block(int block_pos) {
|
||||
|
||||
std::stringstream sss;
|
||||
for (int i = block_pos; i < (int)pow(2, 15); i++) {
|
||||
PrettyPrintUINT64(blob[i], &sss);
|
||||
sss << "\n";
|
||||
}
|
||||
DumpLog(&sss, "raw_data.txt");
|
||||
|
||||
}
|
||||
|
Loading…
Reference in new issue