Added lookat function. Fixed various coordinate missmatches and issues. Fixed camera movement. Added some input functions. I need some way to log fps and find those hitches

master
MitchellHansen 8 years ago
parent 58867415c7
commit bb9fab6305

@ -18,9 +18,13 @@ public:
int add_relative_impulse(DIRECTION direction, float speed); int add_relative_impulse(DIRECTION direction, float speed);
int slew_camera(sf::Vector2f input); int slew_camera(sf::Vector2f input);
void set_camera(sf::Vector2f input);
void set_camera(sf::Vector3f input);
int update(double delta_time); int update(double delta_time);
void look_at_center();
sf::Vector2f* get_direction_pointer(); sf::Vector2f* get_direction_pointer();
sf::Vector3f* get_position_pointer(); sf::Vector3f* get_position_pointer();
sf::Vector3f* get_movement_pointer(); sf::Vector3f* get_movement_pointer();

@ -19,36 +19,28 @@
#define CHUNK_DIM 32 #define CHUNK_DIM 32
#define OCT_DIM 64 #define OCT_DIM 64
struct KeyHasher { struct XYZHasher {
std::size_t operator()(const sf::Vector3i& k) const { std::size_t operator()(const sf::Vector3i& k) const {
return ((std::hash<int>()(k.x) return ((std::hash<int>()(k.x)
^ (std::hash<int>()(k.y) << 1)) >> 1) ^ (std::hash<int>()(k.y) << 1)) >> 1)
^ (std::hash<int>()(k.z) << 1); ^ (std::hash<int>()(k.z) << 1);
} }
}; };
struct Chunk {
Chunk(int type) { voxel_data = new int[CHUNK_DIM * CHUNK_DIM * CHUNK_DIM]; set(type); };
Chunk() { };
void set(int type);
~Chunk() { voxel_data = nullptr; };
int* voxel_data;
};
class Octree { class Octree {
public: public:
Octree() { Octree() {
dat = new uint64_t[(int)pow(2, 15)];
for (int i = 0; i < (int)pow(2, 15); i++) { // initialize the first stack block
dat[i] = 0; stack.push_back(new uint64_t[0x8000]);
for (int i = 0; i < 0x8000; i++) {
stack.back() = 0;
} }
}; };
~Octree() {}; ~Octree() {};
uint64_t *dat; std::list<uint64_t*> stack;
uint64_t stack_pos = 0x8000; uint64_t stack_pos = 0x8000;
uint64_t global_pos = 0; uint64_t global_pos = 0;
@ -65,7 +57,7 @@ public:
// Check for the far bit // Check for the far bit
memcpy(&dat[stack_pos + global_pos], children.data(), children.size() * sizeof(uint64_t)); memcpy(&stack.front()[stack_pos + global_pos], children.data(), children.size() * sizeof(uint64_t));
// Return the bitmask encoding the index of that value // Return the bitmask encoding the index of that value
// If we tripped the far bit, allocate a far index to the stack and place // If we tripped the far bit, allocate a far index to the stack and place
@ -76,6 +68,17 @@ public:
return stack_pos; return stack_pos;
}; };
void print_block(int block_pos) {
std::stringstream sss;
for (int i = 0; i < (int)pow(2, 15); i++) {
PrettyPrintUINT64(stack.front()[i], &sss);
sss << "\n";
}
DumpLog(&sss, "raw_data.txt");
}
}; };
@ -84,6 +87,7 @@ public:
class Map { class Map {
public: public:
Map(sf::Vector3i dim); Map(sf::Vector3i dim);
void generate_octree(); void generate_octree();
@ -118,7 +122,7 @@ private:
char getVoxel(sf::Vector3i pos); char getVoxel(sf::Vector3i pos);
char* voxel_data = new char[OCT_DIM * OCT_DIM * OCT_DIM]; char* voxel_data = new char[OCT_DIM * OCT_DIM * OCT_DIM];
std::unordered_map<sf::Vector3i, Chunk, KeyHasher> chunk_map; //std::unordered_map<sf::Vector3i, Chunk, XYZHasher> chunk_map;
double* height_map; double* height_map;

@ -7,6 +7,9 @@
#include "Vector4.hpp" #include "Vector4.hpp"
#include <bitset> #include <bitset>
#include <string> #include <string>
#include <math.h>
#include <iterator>
const double PI = 3.141592653589793238463; const double PI = 3.141592653589793238463;
const float PI_F = 3.14159265358979f; const float PI_F = 3.14159265358979f;
@ -125,6 +128,20 @@ inline sf::Vector3f CartToSphere(sf::Vector3f in) {
return r; return r;
}; };
inline sf::Vector2f CartToNormalizedSphere(sf::Vector3f in) {
auto r = sf::Vector2f(
atan2(sqrt(in.x * in.x + in.y * in.y), in.z),
atan2(in.y, in.x)
);
return r;
}
inline sf::Vector3f FixOrigin(sf::Vector3f base, sf::Vector3f head) {
return head - base;
}
inline sf::Vector3f Normalize(sf::Vector3f in) { inline sf::Vector3f Normalize(sf::Vector3f in) {
@ -203,3 +220,58 @@ inline void DumpLog(std::stringstream* ss, std::string file_name) {
log_file.close(); log_file.close();
} }
inline std::string sfml_get_input(sf::RenderWindow *window) {
std::stringstream ss;
sf::Event event;
while (window->pollEvent(event)) {
if (event.type == sf::Event::TextEntered) {
ss << event.text.unicode;
}
else if (event.type == sf::Event::KeyPressed) {
if (event.key.code == sf::Keyboard::Return) {
return ss.str();
}
}
}
}
inline std::vector<float> sfml_get_float_input(sf::RenderWindow *window) {
std::stringstream ss;
sf::Event event;
while (true) {
if (window->pollEvent(event)) {
if (event.type == sf::Event::TextEntered) {
if (event.text.unicode > 47 && event.text.unicode < 58 || event.text.unicode == 32)
ss << static_cast<char>(event.text.unicode);
}
else if (event.type == sf::Event::KeyPressed) {
if (event.key.code == sf::Keyboard::Return) {
break;
}
}
}
}
std::istream_iterator<std::string> begin(ss);
std::istream_iterator<std::string> end;
std::vector<std::string> vstrings(begin, end);
std::vector<float> ret;
for (auto i: vstrings) {
ret.push_back(std::stof(i));
}
return ret;
}

@ -111,10 +111,16 @@ __kernel void raycaster(
int2 pixel = {id % (*resolution).x, id / (*resolution).x}; int2 pixel = {id % (*resolution).x, id / (*resolution).x};
float3 ray_dir = projection_matrix[pixel.x + (*resolution).x * pixel.y]; float3 ray_dir = projection_matrix[pixel.x + (*resolution).x * pixel.y];
if (pixel.x == 960 && pixel.y == 540) {
write_imagef(image, pixel, (float4)(0.00, 1.00, 0.00, 1.00));
return;
}
ray_dir = (float3)( ray_dir = (float3)(
ray_dir.z * sin((*cam_dir).x) + ray_dir.x * cos((*cam_dir).x), // 1.57s are temp fix until view matrix is tweaked
ray_dir.z * sin((*cam_dir).x - 1.57) + ray_dir.x * cos((*cam_dir).x - 1.57),
ray_dir.y, ray_dir.y,
ray_dir.z * cos((*cam_dir).x) - ray_dir.x * sin((*cam_dir).x) ray_dir.z * cos((*cam_dir).x - 1.57) - ray_dir.x * sin((*cam_dir).x - 1.57)
); );
ray_dir = (float3)( ray_dir = (float3)(

@ -33,22 +33,22 @@ int Camera::add_relative_impulse(DIRECTION impulse_direction, float speed) {
switch (impulse_direction) { switch (impulse_direction) {
case DIRECTION::UP: case DIRECTION::FORWARD:
dir = sf::Vector2f(direction.y, direction.x + PI_F);
break;
case DIRECTION::DOWN:
dir = sf::Vector2f(direction.y, direction.x); dir = sf::Vector2f(direction.y, direction.x);
break; break;
case DIRECTION::REARWARD:
dir = sf::Vector2f(direction.y, direction.x + PI_F);
break;
case DIRECTION::LEFT: case DIRECTION::LEFT:
dir = sf::Vector2f(direction.y + PI_F + PI_F / 2, PI_F / 2); dir = sf::Vector2f(direction.y + PI_F + PI_F / 2, PI_F / 2);
break; break;
case DIRECTION::RIGHT: case DIRECTION::RIGHT:
dir = sf::Vector2f(direction.y + PI_F / 2, PI_F / 2); dir = sf::Vector2f(direction.y + PI_F / 2, PI_F / 2);
break; break;
case DIRECTION::FORWARD: case DIRECTION::UP:
dir = sf::Vector2f(direction.y, direction.x + PI_F / 2); dir = sf::Vector2f(direction.y, direction.x + PI_F / 2);
break; break;
case DIRECTION::REARWARD: case DIRECTION::DOWN:
dir = sf::Vector2f(direction.y + PI_F, (direction.x * -1) + PI_F / 2 ); dir = sf::Vector2f(direction.y + PI_F, (direction.x * -1) + PI_F / 2 );
break; break;
@ -65,10 +65,16 @@ int Camera::slew_camera(sf::Vector2f input) {
return 1; return 1;
} }
void Camera::set_camera(sf::Vector2f input) {
direction = input;
}
void Camera::set_camera(sf::Vector3f input) {
direction = CartToNormalizedSphere(input);
}
int Camera::update(double delta_time) { int Camera::update(double delta_time) {
// so vector multiplication broke?
// have to do it component wise
double multiplier = 40; double multiplier = 40;
position.x += static_cast<float>(movement.x * delta_time * multiplier); position.x += static_cast<float>(movement.x * delta_time * multiplier);
@ -80,6 +86,22 @@ int Camera::update(double delta_time) {
return 1; return 1;
} }
void Camera::look_at_center() {
//std::cout << "X:" << position.x << std::endl;
//std::cout << "Y:" << position.y << std::endl;
//std::cout << "Z:" << position.z << std::endl;
//std::cout << "dx:" << direction.x << std::endl;
//std::cout << "dy:" << direction.y << std::endl;
direction = CartToNormalizedSphere(sf::Vector3f(75, 75, 75) - position);
//std::cout << "dx:" << direction.x << std::endl;
//std::cout << "dy:" << direction.y << std::endl;
}
sf::Vector2f* Camera::get_direction_pointer() { sf::Vector2f* Camera::get_direction_pointer() {
return &direction; return &direction;
} }

@ -174,69 +174,40 @@ void Map::generate_octree() {
generate_children(sf::Vector3i(0, 0, 0), OCT_DIM/2); generate_children(sf::Vector3i(0, 0, 0), OCT_DIM/2);
DumpLog(&ss, "raw_output.txt"); DumpLog(&ss, "raw_output.txt");
std::stringstream sss; a.print_block(0);
for (int i = 0; i < (int)pow(2, 15); i++) {
PrettyPrintUINT64(a.dat[i], &sss);
sss << "\n";
}
DumpLog(&sss, "raw_data.txt");
// levels defines how many levels to traverse before we hit raw data
// Will be the map width I presume. Will still need to handle how to swap in and out data.
// Possible have some upper static nodes that will stay full regardless of contents?
int levels = static_cast<int>(log2(64));
std::list<int> parent_stack;
int byte_pos = 0;
unsigned int parent = 0;
for (int i = 0; i < 16; i++) {
parent ^= 1 << i;
}
unsigned int leafmask = 255;
unsigned int validmask = leafmask << 8;
parent &= validmask;
parent &= leafmask;
std::cout << BitCount(parent & leafmask);
unsigned int children[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
} }
void Map::load_unload(sf::Vector3i world_position) { void Map::load_unload(sf::Vector3i world_position) {
sf::Vector3i chunk_pos(world_to_chunk(world_position)); //sf::Vector3i chunk_pos(world_to_chunk(world_position));
//
//Don't forget the middle chunk ////Don't forget the middle chunk
if (chunk_map.find(chunk_pos) == chunk_map.end()) { //if (chunk_map.find(chunk_pos) == chunk_map.end()) {
chunk_map[chunk_pos] = Chunk(5); // chunk_map[chunk_pos] = Chunk(5);
} //}
for (int x = chunk_pos.x - chunk_radius / 2; x < chunk_pos.x + chunk_radius / 2; x++) { //for (int x = chunk_pos.x - chunk_radius / 2; x < chunk_pos.x + chunk_radius / 2; x++) {
for (int y = chunk_pos.y - chunk_radius / 2; y < chunk_pos.y + chunk_radius / 2; y++) { // for (int y = chunk_pos.y - chunk_radius / 2; y < chunk_pos.y + chunk_radius / 2; y++) {
for (int z = chunk_pos.z - chunk_radius / 2; z < chunk_pos.z + chunk_radius / 2; z++) { // for (int z = chunk_pos.z - chunk_radius / 2; z < chunk_pos.z + chunk_radius / 2; z++) {
if (chunk_map.find(sf::Vector3i(x, y, z)) == chunk_map.end()) { // if (chunk_map.find(sf::Vector3i(x, y, z)) == chunk_map.end()) {
chunk_map.emplace(sf::Vector3i(x, y, z), Chunk(rand() % 6)); // chunk_map.emplace(sf::Vector3i(x, y, z), Chunk(rand() % 6));
//chunk_map[sf::Vector3i(x, y, z)] = Chunk(rand() % 6); // //chunk_map[sf::Vector3i(x, y, z)] = Chunk(rand() % 6);
} // }
} // }
} // }
} //}
} }
void Map::load_single(sf::Vector3i world_position) { void Map::load_single(sf::Vector3i world_position) {
sf::Vector3i chunk_pos(world_to_chunk(world_position)); //sf::Vector3i chunk_pos(world_to_chunk(world_position));
//Don't forget the middle chunk ////Don't forget the middle chunk
if (chunk_map.find(chunk_pos) == chunk_map.end()) { //if (chunk_map.find(chunk_pos) == chunk_map.end()) {
chunk_map[chunk_pos] = Chunk(0); // chunk_map[chunk_pos] = Chunk(0);
} //}
} }
sf::Vector3i Map::getDimensions() { sf::Vector3i Map::getDimensions() {
@ -245,16 +216,16 @@ sf::Vector3i Map::getDimensions() {
void Map::setVoxel(sf::Vector3i world_position, int val) { void Map::setVoxel(sf::Vector3i world_position, int val) {
load_single(world_position); //load_single(world_position);
sf::Vector3i chunk_pos(world_to_chunk(world_position)); //sf::Vector3i chunk_pos(world_to_chunk(world_position));
sf::Vector3i in_chunk_pos( //sf::Vector3i in_chunk_pos(
world_position.x % CHUNK_DIM, // world_position.x % CHUNK_DIM,
world_position.y % CHUNK_DIM, // world_position.y % CHUNK_DIM,
world_position.z % CHUNK_DIM // world_position.z % CHUNK_DIM
); //);
chunk_map.at(chunk_pos).voxel_data[in_chunk_pos.x + CHUNK_DIM * (in_chunk_pos.y + CHUNK_DIM * in_chunk_pos.z)] //chunk_map.at(chunk_pos).voxel_data[in_chunk_pos.x + CHUNK_DIM * (in_chunk_pos.y + CHUNK_DIM * in_chunk_pos.z)]
= val; // = val;
} }
@ -262,16 +233,3 @@ char Map::getVoxel(sf::Vector3i pos){
return voxel_data[pos.x + OCT_DIM * (pos.y + OCT_DIM * pos.z)]; return voxel_data[pos.x + OCT_DIM * (pos.y + OCT_DIM * pos.z)];
} }
void Chunk::set(int type) {
for (int i = 0; i < CHUNK_DIM * CHUNK_DIM * CHUNK_DIM; i++) {
voxel_data[i] = 0;
}
for (int x = 0; x < CHUNK_DIM; x+=2) {
for (int y = 0; y < CHUNK_DIM; y+=2) {
//list[x + dim.x * (y + dim.z * z)]
voxel_data[x + CHUNK_DIM * (y + CHUNK_DIM * 1)] = type;
}
}
}

@ -26,6 +26,8 @@ void Old_Map::generate_terrain() {
voxel_data[i] = 0; voxel_data[i] = 0;
} }
set_voxel(sf::Vector3i(75, 75, 75), 5);
for (int i = 0; i < dimensions.x * dimensions.y; i++) { for (int i = 0; i < dimensions.x * dimensions.y; i++) {
height_map[i] = 0; height_map[i] = 0;
} }

@ -65,8 +65,8 @@ sf::Texture window_texture;
int main() { int main() {
Map _map(sf::Vector3i(0, 0, 0)); //Map _map(sf::Vector3i(0, 0, 0));
_map.generate_octree(); //_map.generate_octree();
glewInit(); glewInit();
@ -101,8 +101,8 @@ int main() {
rc->assign_map(map); rc->assign_map(map);
Camera *camera = new Camera( Camera *camera = new Camera(
sf::Vector3f(10, 11, 12), sf::Vector3f(50, 50, 50),
sf::Vector2f(0.1f, 1.00f) sf::Vector2f(0.0f, 1.5707f)
); );
rc->assign_camera(camera); rc->assign_camera(camera);
@ -126,6 +126,9 @@ int main() {
sf::Vector2f *dp = camera->get_direction_pointer(); sf::Vector2f *dp = camera->get_direction_pointer();
debug_text cam_text_x(1, 30, &dp->x, "incli: "); debug_text cam_text_x(1, 30, &dp->x, "incli: ");
debug_text cam_text_y(2, 30, &dp->y, "asmth: "); debug_text cam_text_y(2, 30, &dp->y, "asmth: ");
debug_text cam_text_pos_x(3, 30, &camera->get_position_pointer()->x, "x: ");
debug_text cam_text_pos_y(4, 30, &camera->get_position_pointer()->y, "y: ");
debug_text cam_text_pos_z(5, 30, &camera->get_position_pointer()->z, "z: ");
// =========================== // ===========================
@ -154,13 +157,19 @@ int main() {
window.close(); window.close();
if (event.type == sf::Event::KeyPressed) { if (event.type == sf::Event::KeyPressed) {
if (event.key.code == sf::Keyboard::Space) { if (event.key.code == sf::Keyboard::M) {
if (mouse_enabled) if (mouse_enabled)
mouse_enabled = false; mouse_enabled = false;
else else
mouse_enabled = true; mouse_enabled = true;
} if (event.key.code == sf::Keyboard::R) { } if (event.key.code == sf::Keyboard::R) {
reset = true; reset = true;
} if (event.key.code == sf::Keyboard::X) {
std::vector<float> tvf = sfml_get_float_input(&window);
if (tvf.size() == 3){
sf::Vector3f tv3(tvf.at(0), tvf.at(1), tvf.at(2));
camera->set_position(tv3);
}
} }
} }
} }
@ -170,6 +179,9 @@ int main() {
if (sf::Keyboard::isKeyPressed(sf::Keyboard::LShift)) { if (sf::Keyboard::isKeyPressed(sf::Keyboard::LShift)) {
speed = 0.2f; speed = 0.2f;
} }
if (sf::Keyboard::isKeyPressed(sf::Keyboard::L)) {
camera->look_at_center();
}
if (sf::Keyboard::isKeyPressed(sf::Keyboard::Q)) { if (sf::Keyboard::isKeyPressed(sf::Keyboard::Q)) {
camera->add_relative_impulse(Camera::DIRECTION::DOWN, speed); camera->add_relative_impulse(Camera::DIRECTION::DOWN, speed);
} }
@ -252,6 +264,10 @@ int main() {
cam_text_x.draw(&window); cam_text_x.draw(&window);
cam_text_y.draw(&window); cam_text_y.draw(&window);
cam_text_pos_x.draw(&window);
cam_text_pos_y.draw(&window);
cam_text_pos_z.draw(&window);
window.display(); window.display();
} }

Loading…
Cancel
Save