The settings buffer is fully operational

master
mitchellhansen 7 years ago
parent da461a0ee4
commit d2bc5e483a

@ -151,8 +151,13 @@ public:
void save_config();
// Set a define
void setDefine(std::string name, std::string value);
void removeDefine(std::string name);
void set_define(std::string name, std::string value);
void remove_define(std::string name);
bool create_settings_buffer();
bool release_settings_buffer();
bool add_to_settings_buffer(std::string setting_name, std::string define_accessor_name, int64_t *value);
bool remove_from_settings_buffer(std::string setting_name);
// ================================== DEBUG =======================================
@ -286,9 +291,18 @@ private:
// Containers holding the kernels and buffers
std::map<std::string, cl_kernel> kernel_map;
std::map<std::string, cl_mem> buffer_map;
std::map<std::string, std::string> defines_map;
std::unordered_map<std::string, std::pair<sf::Sprite, std::unique_ptr<sf::Texture>>> image_map;
const unsigned int SETTINGS_BUFFER_SIZE = 64;
unsigned int settings_buffer_position = 0;
int64_t* settings_buffer = nullptr;
// name of setting, position in the settings buffer
std::map<std::string, unsigned int> settings_buffer_indices;
// name of define, value
std::map<std::string, std::string> defines_map;
// Hardware caster holds and renders its own textures
sf::Sprite viewport_sprite;
sf::Texture viewport_texture;
@ -303,7 +317,6 @@ private:
std::vector<PackedData> *lights;
int light_count = 0;
int error = 0;
};

@ -47,6 +47,11 @@ constant float4 overshoot_color_2 = { 0.00f, 0.00f, 0.00f, 0.00f };
// =========================================================================
// =========================================================================
#define setting(name) settings_buffer[name]
// =========================================================================
// ========================= HELPER FUNCTIONS ==============================
@ -120,7 +125,7 @@ bool get_oct_vox(
struct TraversalState ts;
// push the root node to the parent stack
ts.current_descriptor_index = *settings_buffer;
ts.current_descriptor_index = setting(OCTREE_ROOT_INDEX);
ts.current_descriptor = octree_descriptor_buffer[ts.current_descriptor_index];
ts.scale = 0;
ts.found = false;
@ -315,146 +320,6 @@ __kernel void raycaster(
intersection_t += delta_t * fabs(convert_float3(face_mask.xyz));
voxel.xyz += voxel_step.xyz * face_mask.xyz;
// =======================================================================================================================================
// =======================================================================================================================================
// =======================================================================================================================================
// uchar prev_val = traversal_state.idx_stack[traversal_state.scale];
// uint8_t this_face_mask = 0;
//
// // Check the voxel face that we traversed
// // and increment the idx in the idx stack
// if (face_mask.x) {
// this_face_mask = Octree::idx_set_x_mask;
// }
// else if (face_mask.y) {
// this_face_mask = Octree::idx_set_y_mask;
// }
// else if (face_mask.z) {
// this_face_mask = Octree::idx_set_z_mask;
// }
//
// traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask;
//
// // Mask index is the 1D index'd value of the idx for interaction with the valid / leaf masks
// int mask_index = traversal_state.idx_stack[traversal_state.scale];
//
// // Whether or not the next oct we want to enter in the current CD's valid mask is 1 or 0
// bool is_valid = false;
//
// // TODO: Rework this logic so we don't have this bodgy if
// if (mask_index > prev_val)
// is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index];
//
// // Check to see if the idx increased or decreased
// // If it decreased
// // Pop up the stack until the oct that the idx flip is valid and we landed on a valid oct
// while (mask_index < prev_val || !is_valid) {
//
// jump_power *= 2;
//
// // Keep track of the 0th edge of out current oct
// traversal_state.oct_pos.x = floor(voxel.x / 2) * jump_power;
// traversal_state.oct_pos.y = floor(voxel.y / 2) * jump_power;
// traversal_state.oct_pos.z = floor(voxel.z / 2) * jump_power;
//
// // Clear and pop the idx stack
// traversal_state.idx_stack[traversal_state.scale] = 0;
//
// // Scale is now set to the oct above. Be wary of this
// traversal_state.scale--;
//
// // Update the prev_val for our new idx
// prev_val = traversal_state.idx_stack[traversal_state.scale];
//
// // Clear and pop the parent stack, maybe off by one error?
// traversal_state.parent_stack_index[traversal_state.parent_stack_position] = 0;
// traversal_state.parent_stack[traversal_state.parent_stack_position] = 0;
// traversal_state.parent_stack_position--;
//
// // Set the current CD to the one on top of the stack
// traversal_state.current_descriptor =
// traversal_state.parent_stack[traversal_state.parent_stack_position];
//
// // Apply the face mask to the new idx for the while check
// traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask;
//
// // Get the mask index of the new idx and check the valid status
// mask_index = traversal_state.idx_stack[traversal_state.scale];
// is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index];
// }
//
// // At this point parent_stack[position] is at the CD of an oct with a valid oct at the leaf indicated by the current
// // idx in the idx stack scale
//
// // While we haven't bottomed out and the oct we're looking at is valid
// while (jump_power > 1 && is_valid) {
//
// // If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
// traversal_state.scale++;
// jump_power /= 2;
//
// // Count the number of valid octs that come before and add it to the index to get the position
// // Negate it by one as it counts itself
// int count = count_bits((uint8_t)(traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & count_mask_8[mask_index]) - 1;
//
// // If this CD had the far bit set
// if (far_bit_mask & descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]]) {
//
// // access the far point at which the head points too. Determine it's value, and add
// // the count of the valid bits in the current CD to the index
// uint64_t far_pointer_index =
// traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // current index +
// (traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask); // the relative prt to the far ptr
//
// // Get the absolute ptr from the far ptr and add the count to get the CD that we want
// traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] = descriptor_buffer[far_pointer_index] + count;
// }
// // If this CD doesn't have the far bit set, access the element at which head points to
// // and then add the specified number of indices to get to the correct child descriptor
// else {
// traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] =
// traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // The current index to this CD
// (traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask) + count; // The relative dist + the number of bits that were valid
// }
//
// // Now that we have the index set we can increase our parent stack position to the next level and
// // retrieve the value of its CD
// traversal_state.parent_stack_position++;
// traversal_state.parent_stack[traversal_state.parent_stack_position] = descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]];
//
// // Unlike the single shot DFS, it makes a bit more sense to have this at the tail of the while loop
// // Do the logic steps to find which sub oct we step down into
// if (voxel.x >= (jump_power / 2) + traversal_state.oct_pos.x) {
//
// // Set our voxel position to the (0,0) of the correct oct
// traversal_state.oct_pos.x += (jump_power / 2);
//
// // Set the idx to represent the move
// traversal_state.idx_stack[traversal_state.scale] |= idx_set_x_mask;
//
// }
// if (voxel.y >= (jump_power / 2) + traversal_state.oct_pos.y) {
//
// traversal_state.oct_pos.y += (jump_power / 2);
// traversal_state.idx_stack[traversal_state.scale] |= idx_set_y_mask;
// }
// if (voxel.z >= (jump_power / 2) + traversal_state.oct_pos.z) {
//
// traversal_state.oct_pos.z += (jump_power / 2);
// traversal_state.idx_stack[traversal_state.scale] |= idx_set_z_mask;
// }
//
// // Update the mask index with the new voxel we walked down to, and then check it's valid status
// mask_index = traversal_state.idx_stack[traversal_state.scale];
// is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index];
//
// }
// =======================================================================================================================================
// =======================================================================================================================================
// =======================================================================================================================================
// Test for out of bounds contions, add fog
if (any(voxel >= *map_dim) || any(voxel < 0)){
voxel.xyz -= voxel_step.xyz * face_mask.xyz;
@ -462,11 +327,11 @@ __kernel void raycaster(
color_accumulator.w *= 4;
break;
}
int vox_dim = setting(OCTDIM);
int vox_dim = OCTDIM;
// If we hit a voxel
// If we hit a voxel
// if (voxel.x < (*map_dim).x && voxel.y < (*map_dim).x && voxel.z < (*map_dim).x){
if (voxel.x < (*map_dim).x && voxel.y < (*map_dim).x && voxel.z < (*map_dim).x){
// if (get_oct_vox(
// voxel,
// octree_descriptor_buffer,
@ -480,7 +345,7 @@ __kernel void raycaster(
// }
// } else {
voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))];
//}
}

@ -23,18 +23,18 @@ Application::~Application() {
else {
Logger::log("Can't release window, shared_ptr count : " + window.use_count(), Logger::LogLevel::WARN);
}
//light_handle->~LightHandle();
//light_controller->~LightController();
}
bool Application::init_clcaster() {
// Start up the raycaster
raycaster = std::make_shared<CLCaster>();
raycaster->setDefine("OCTDIM", std::to_string(MAP_X));
if (!raycaster->init())
abort();
raycaster->add_to_settings_buffer("octree_dimensions", "OCTDIM", (int64_t*)&MAP_X);
map = std::make_shared<Map>(MAP_X);
// TODO: Implement this
@ -47,9 +47,6 @@ bool Application::init_clcaster() {
raycaster->assign_octree(map);
raycaster->assign_map(map);
camera = std::make_shared<Camera>(
sf::Vector3f(3.5f, 3.5f, 3.5f), // Starting position
sf::Vector2f(1.57f, 0.0f), // Direction
@ -77,7 +74,7 @@ bool Application::init_clcaster() {
Logger::log("Failed to load spritesheet from file", Logger::LogLevel::WARN);
raycaster->create_texture_atlas(&spritesheet, sf::Vector2i(16, 16));
// Checks to see if proper data was uploaded, then sets the kernel args
// Compiles the kernel, Checks to see if proper data was uploaded, then sets the kernel args
// ALL DATA LOADING MUST BE FINISHED
if (!raycaster->validate()) {
abort();

@ -3,14 +3,6 @@
CLCaster::CLCaster() {}
CLCaster::~CLCaster() {
// Causes sigabrt??
//release_map();
//release_camera();
//release_octree();
//clReleaseKernel(kernel_map.at("raycaster"));
//clReleaseProgram()
//release_viewport();
delete[] viewport_matrix;
delete[] viewport_image;
@ -64,9 +56,8 @@ bool CLCaster::init() {
return false;
}
if (!compile_kernel("../kernels/ray_caster_kernel.cl", true, "raycaster")) {
Logger::log("Failed to compile the kernel", Logger::LogLevel::ERROR, __LINE__, __FILE__);
std::cin.get(); // hang the output window so we can read the error
if (!create_settings_buffer()) {
Logger::log("Failed to create settings buffer", Logger::LogLevel::ERROR, __LINE__, __FILE__);
return false;
}
@ -117,8 +108,8 @@ bool CLCaster::assign_octree(std::shared_ptr<Map> map) {
return false;
if (!create_buffer("octree_attachment_buffer", map->octree.buffer_size * sizeof(uint64_t), map->octree.attachment_buffer))
return false;
if (!create_buffer("settings_buffer", sizeof(uint64_t), &map->octree.root_index))
return false;
add_to_settings_buffer("octree_root_index", "OCTREE_ROOT_INDEX", (int64_t*)&map->octree.root_index);
return true;
}
@ -134,8 +125,6 @@ bool CLCaster::release_octree()
return false;
if (!release_buffer("octree_attachment_buffer"))
return false;
if (!release_buffer("settings_buffer"))
return false;
return true;
}
@ -166,6 +155,12 @@ bool CLCaster::release_camera() {
bool CLCaster::validate() {
if (!compile_kernel("../kernels/ray_caster_kernel.cl", true, "raycaster")) {
Logger::log("Failed to compile the kernel", Logger::LogLevel::ERROR, __LINE__, __FILE__);
std::cin.get(); // hang the output window so we can read the error
return false;
}
Logger::log("Validating OpenCL kernel args", Logger::LogLevel::INFO);
// Check to make sure everything has been entered
@ -278,7 +273,7 @@ bool CLCaster::create_viewport(int width, int height, float v_fov, float h_fov)
}
}
if (!create_buffer("viewport_matrix", sizeof(float) * 4 * view_res.x * view_res.y, viewport_matrix, CL_MEM_USE_HOST_PTR))
if (!create_buffer("viewport_matrix", sizeof(float) * 4 * view_res.x * view_res.y, viewport_matrix))
return false;
// Create the image that opencl's rays write to
@ -635,7 +630,6 @@ bool CLCaster::create_shared_context()
0
};
#elif defined TARGET_OS_MAC
CGLContextObj glContext = CGLGetCurrentContext();
@ -648,8 +642,6 @@ bool CLCaster::create_shared_context()
#endif
// Create our shared context
context = clCreateContext(
context_properties,
@ -719,7 +711,6 @@ bool CLCaster::compile_kernel(std::string kernel_source, bool is_path, std::stri
return false;
}
std::stringstream build_string_stream;
// walk the settings index's and add them to the defines
@ -727,7 +718,6 @@ bool CLCaster::compile_kernel(std::string kernel_source, bool is_path, std::stri
build_string_stream << " -D" << define.first << "=" << define.second;
}
//build_string_stream << "-DOCTDIM=" << std::to_string(Application::MAP_X);
build_string_stream << " -cl-finite-math-only -cl-fast-relaxed-math -cl-unsafe-math-optimizations";
std::string build_string = build_string_stream.str();
@ -1177,14 +1167,63 @@ std::string CLCaster::cl_err_lookup(int error_code) {
}
void CLCaster::setDefine(std::string name, std::string value) {
void CLCaster::set_define(std::string name, std::string value) {
defines_map[name] = value;
}
void CLCaster::removeDefine(std::string name) {
void CLCaster::remove_define(std::string name) {
defines_map.erase(name);
}
bool CLCaster::add_to_settings_buffer(std::string setting_name, std::string define_accessor_name, int64_t *value) {
bool success = true;
if (settings_buffer == nullptr){
Logger::log("Trying to push settings to an uninitialized settings buffer", Logger::LogLevel::ERROR, __LINE__, __FILE__);
success = false;
} else if (defines_map.count(define_accessor_name)) {
Logger::log("Define name already present in the defines map", Logger::LogLevel::ERROR, __LINE__, __FILE__);
success = false;
} else {
if (settings_buffer_position < SETTINGS_BUFFER_SIZE) {
defines_map[define_accessor_name] = std::to_string(settings_buffer_position);
settings_buffer[settings_buffer_position] = *value;
settings_buffer_position++;
} else {
Logger::log("Settings buffer has reached the maximum size of " + std::to_string(SETTINGS_BUFFER_SIZE) + " elements", Logger::LogLevel::ERROR, __LINE__, __FILE__);
success = false;
}
}
return success;
}
bool CLCaster::create_settings_buffer() {
settings_buffer = new int64_t[SETTINGS_BUFFER_SIZE];
if (!create_buffer("settings_buffer", sizeof(int64_t) * SETTINGS_BUFFER_SIZE, settings_buffer, CL_MEM_USE_HOST_PTR))
return false;
return true;
}
bool CLCaster::remove_from_settings_buffer(std::string setting_name) {
Logger::log("remove_from_settings_buffer() not implimented", Logger::LogLevel::WARN, __LINE__, __FILE__);
return false;
}
bool CLCaster::release_settings_buffer() {
if (!release_buffer("settings_buffer"))
return false;
return true;
}
CLCaster::device::device(cl_device_id device_id, cl_platform_id platform_id) {
@ -1237,13 +1276,10 @@ CLCaster::device::device(const device& d) {
void CLCaster::device::print(std::ostream& stream) const {
stream << "\n\tDevice ID : " << device_id << std::endl;
stream << "\tDevice Name : " << data.device_name << std::endl;
stream << "\tPlatform ID : " << platform_id << std::endl;
stream << "\tPlatform Name : " << data.platform_name << std::endl;
stream << "\tOpenCL Version : " << data.opencl_version << std::endl;
stream << "\tSupports sharing : " << std::boolalpha << cl_gl_sharing << std::endl;
stream << "\tDevice Name : " << data.device_name << std::endl;
stream << "\tPlatform Name : " << data.platform_name << std::endl;
stream << "\tDevice Type : ";
if (data.device_type == CL_DEVICE_TYPE_CPU)
@ -1255,8 +1291,10 @@ void CLCaster::device::print(std::ostream& stream) const {
else if (data.device_type == CL_DEVICE_TYPE_ACCELERATOR)
stream << "Accelerator" << std::endl;
stream << "\tIs Little Endian : " << std::boolalpha << is_little_endian << std::endl;
stream << "\tOpenCL Version : " << data.opencl_version << std::endl;
stream << "\tSupports sharing : " << std::boolalpha << cl_gl_sharing << std::endl;
stream << "\tIs Little Endian : " << std::boolalpha << is_little_endian << std::endl;
stream << "\tClock Frequency : " << data.clock_frequency << std::endl;
stream << "\tCompute Units : " << data.compute_units << std::endl;

Loading…
Cancel
Save