@ -34,8 +34,8 @@
# include "Vector4.hpp"
# include "Vector4.hpp"
# include <Camera.h>
# include <Camera.h>
const int WINDOW_X = 1 00 0;
const int WINDOW_X = 1 92 0;
const int WINDOW_Y = 10 0 0;
const int WINDOW_Y = 10 8 0;
const int WORK_SIZE = WINDOW_X * WINDOW_Y ;
const int WORK_SIZE = WINDOW_X * WINDOW_Y ;
const int MAP_X = 512 ;
const int MAP_X = 512 ;
@ -65,297 +65,306 @@ sf::Texture window_texture;
int main ( ) {
int main ( ) {
//Map m(sf::Vector3i (50, 50, 50));
//return 1;
sf : : RenderWindow window ( sf : : VideoMode ( WINDOW_X , WINDOW_Y ) , " SFML " ) ;
// Setup CL, instantiate and pass in values to the kernel
CL_Wrapper c ;
query_platform_devices ( ) ;
c . acquire_platform_and_device ( ) ;
c . create_shared_context ( ) ;
c . create_command_queue ( ) ;
if ( c . compile_kernel ( " ../kernels/ray_caster_kernel.cl " , true , " min_kern " ) < 0 ) {
std : : cin . get ( ) ;
return - 1 ;
}
std : : cout < < " map... " ;
sf : : Vector3i map_dim ( MAP_X , MAP_Y , MAP_Z ) ;
Map * map = new Map ( map_dim ) ;
c . create_buffer ( " map_buffer " , sizeof ( char ) * map_dim . x * map_dim . y * map_dim . z , map - > list ) ;
c . create_buffer ( " dim_buffer " , sizeof ( int ) * 3 , & map_dim ) ;
sf : : Vector2i view_res ( WINDOW_X , WINDOW_Y ) ;
c . create_buffer ( " res_buffer " , sizeof ( int ) * 2 , & view_res ) ;
double y_increment_radians = DegreesToRadians ( 50.0 / view_res . y ) ;
double x_increment_radians = DegreesToRadians ( 80.0 / view_res . x ) ;
std : : cout < < " view matrix... " ;
sf : : Vector4f * view_matrix = new sf : : Vector4f [ WINDOW_X * WINDOW_Y * 4 ] ;
for ( int y = - view_res . y / 2 ; y < view_res . y / 2 ; y + + ) {
for ( int x = - view_res . x / 2 ; x < view_res . x / 2 ; x + + ) {
// The base ray direction to slew from
sf : : Vector3f ray ( 1 , 0 , 0 ) ;
// Y axis, pitch
ray = sf : : Vector3f (
ray . z * sin ( y_increment_radians * y ) + ray . x * cos ( y_increment_radians * y ) ,
ray . y ,
ray . z * cos ( y_increment_radians * y ) - ray . x * sin ( y_increment_radians * y )
) ;
// Z axis, yaw
ray = sf : : Vector3f (
ray . x * cos ( x_increment_radians * x ) - ray . y * sin ( x_increment_radians * x ) ,
ray . x * sin ( x_increment_radians * x ) + ray . y * cos ( x_increment_radians * x ) ,
ray . z
) ;
int index = ( x + view_res . x / 2 ) + view_res . x * ( y + view_res . y / 2 ) ;
ray = Normalize ( ray ) ;
view_matrix [ index ] = sf : : Vector4f (
ray . x ,
ray . y ,
ray . z ,
0
) ;
}
}
c . create_buffer ( " view_matrix_buffer " , sizeof ( float ) * 4 * view_res . x * view_res . y , view_matrix ) ;
Camera camera (
sf : : Vector3f ( 256 , 256 , 256 ) ,
sf : : Vector2f ( 0.0f , 1.00f )
) ;
c . create_buffer ( " cam_dir_buffer " , sizeof ( float ) * 4 , ( void * ) camera . get_direction_pointer ( ) , CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR ) ;
c . create_buffer ( " cam_pos_buffer " , sizeof ( float ) * 4 , ( void * ) camera . get_position_pointer ( ) , CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR ) ;
int light_count = 2 ;
c . create_buffer ( " light_count_buffer " , sizeof ( int ) , & light_count ) ;
// {r, g, b, i, x, y, z, x', y', z'}
sf : : Vector3f v = Normalize ( sf : : Vector3f ( 1.0 , 1.0 , 0.0 ) ) ;
sf : : Vector3f v2 = Normalize ( sf : : Vector3f ( 1.1 , 0.4 , 0.7 ) ) ;
float light [ ] = { 0.4 , 0.8 , 0.1 , 1 , 50 , 50 , 50 , v . x , v . y , v . z ,
0.4 , 0.8 , 0.1 , 1 , 50 , 50 , 50 , v2 . x , v2 . y , v2 . z } ;
c . create_buffer ( " light_buffer " , sizeof ( float ) * 10 * light_count , light , CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR ) ;
// The drawing canvas
unsigned char * pixel_array = new sf : : Uint8 [ WINDOW_X * WINDOW_Y * 4 ] ;
for ( int i = 0 ; i < WINDOW_X * WINDOW_Y * 4 ; i + = 4 ) {
pixel_array [ i ] = 255 ; // R?
pixel_array [ i + 1 ] = 255 ; // G?
pixel_array [ i + 2 ] = 255 ; // B?
pixel_array [ i + 3 ] = 100 ; // A?
}
sf : : Texture t ;
t . create ( WINDOW_X , WINDOW_Y ) ;
t . update ( pixel_array ) ;
int error ;
cl_mem image_buff = clCreateFromGLTexture (
c . getContext ( ) , CL_MEM_WRITE_ONLY , GL_TEXTURE_2D ,
0 , t . getNativeHandle ( ) , & error ) ;
if ( c . assert ( error , " clCreateFromGLTexture " ) )
return - 1 ;
c . store_buffer ( image_buff , " image_buffer " ) ;
c . set_kernel_arg ( " min_kern " , 0 , " map_buffer " ) ;
c . set_kernel_arg ( " min_kern " , 1 , " dim_buffer " ) ;
c . set_kernel_arg ( " min_kern " , 2 , " res_buffer " ) ;
c . set_kernel_arg ( " min_kern " , 3 , " view_matrix_buffer " ) ;
c . set_kernel_arg ( " min_kern " , 4 , " cam_dir_buffer " ) ;
c . set_kernel_arg ( " min_kern " , 5 , " cam_pos_buffer " ) ;
c . set_kernel_arg ( " min_kern " , 6 , " light_buffer " ) ;
c . set_kernel_arg ( " min_kern " , 7 , " light_count_buffer " ) ;
c . set_kernel_arg ( " min_kern " , 8 , " image_buffer " ) ;
sf : : Sprite s ;
s . setTexture ( t ) ;
s . setPosition ( 0 , 0 ) ;
// The step size in milliseconds between calls to Update()
// Lets set it to 16.6 milliseonds (60FPS)
float step_size = 0.0166f ;
// Timekeeping values for the loop
double frame_time = 0.0 ,
elapsed_time = 0.0 ,
delta_time = 0.0 ,
accumulator_time = 0.0 ,
current_time = 0.0 ;
fps_counter fps ;
// ============================= RAYCASTER SETUP ==================================
// Setup the sprite and texture
window_texture . create ( WINDOW_X , WINDOW_Y ) ;
window_sprite . setPosition ( 0 , 0 ) ;
// State values
sf : : Vector3f cam_vec ( 0 , 0 , 0 ) ;
RayCaster ray_caster ( map , map_dim , view_res ) ;
sf : : Vector2f * dp = camera . get_direction_pointer ( ) ;
debug_text cam_text_x ( 1 , 30 , & dp - > x , " X: " ) ;
debug_text cam_text_y ( 2 , 30 , & dp - > y , " Y: " ) ;
sf : : Vector3f * mp = camera . get_movement_pointer ( ) ;
debug_text cam_text_mov_x ( 4 , 30 , & mp - > x , " X: " ) ;
debug_text cam_text_mov_y ( 5 , 30 , & mp - > y , " Y: " ) ;
debug_text cam_text_mov_z ( 6 , 30 , & mp - > y , " Z: " ) ;
//debug_text cam_text_z(3, 30, &p->z);
debug_text light_x ( 7 , 30 , & light [ 7 ] , " X: " ) ;
debug_text light_y ( 8 , 30 , & light [ 8 ] , " Y: " ) ;
debug_text light_z ( 9 , 30 , & light [ 9 ] , " Z: " ) ;
// ===============================================================================
// Mouse capture
sf : : Vector2i deltas ;
sf : : Vector2i fixed ( window . getSize ( ) ) ;
bool mouse_enabled = true ;
sf : : Vector3f cam_mov_vec ;
while ( window . isOpen ( ) ) {
// Poll for events from the user
sf : : Event event ;
while ( window . pollEvent ( event ) ) {
// If the user tries to exit the application via the GUI
if ( event . type = = sf : : Event : : Closed )
window . close ( ) ;
if ( event . type = = sf : : Event : : KeyPressed ) {
if ( event . key . code = = sf : : Keyboard : : Space ) {
if ( mouse_enabled )
mouse_enabled = false ;
else
mouse_enabled = true ;
}
}
}
cam_vec . x = 0 ;
cam_vec . y = 0 ;
cam_vec . z = 0 ;
if ( sf : : Keyboard : : isKeyPressed ( sf : : Keyboard : : Q ) ) {
camera . add_relative_impulse ( Camera : : DIRECTION : : DOWN ) ;
}
if ( sf : : Keyboard : : isKeyPressed ( sf : : Keyboard : : E ) ) {
camera . add_relative_impulse ( Camera : : DIRECTION : : UP ) ;
}
if ( sf : : Keyboard : : isKeyPressed ( sf : : Keyboard : : W ) ) {
camera . add_relative_impulse ( Camera : : DIRECTION : : FORWARD ) ;
}
if ( sf : : Keyboard : : isKeyPressed ( sf : : Keyboard : : S ) ) {
camera . add_relative_impulse ( Camera : : DIRECTION : : REARWARD ) ;
}
if ( sf : : Keyboard : : isKeyPressed ( sf : : Keyboard : : A ) ) {
camera . add_relative_impulse ( Camera : : DIRECTION : : LEFT ) ;
}
if ( sf : : Keyboard : : isKeyPressed ( sf : : Keyboard : : D ) ) {
camera . add_relative_impulse ( Camera : : DIRECTION : : RIGHT ) ;
}
if ( sf : : Keyboard : : isKeyPressed ( sf : : Keyboard : : T ) ) {
camera . set_position ( sf : : Vector3f ( 50 , 50 , 50 ) ) ;
}
camera . add_static_impulse ( cam_vec ) ;
if ( mouse_enabled ) {
deltas = fixed - sf : : Mouse : : getPosition ( ) ;
if ( deltas ! = sf : : Vector2i ( 0 , 0 ) & & mouse_enabled = = true ) {
// Mouse movement
sf : : Mouse : : setPosition ( fixed ) ;
camera . slew_camera ( sf : : Vector2f (
deltas . y / 300.0f ,
deltas . x / 300.0f
) ) ;
}
}
// Time keeping
elapsed_time = elap_time ( ) ;
delta_time = elapsed_time - current_time ;
current_time = elapsed_time ;
if ( delta_time > 0.2f )
delta_time = 0.2f ;
accumulator_time + = delta_time ;
while ( ( accumulator_time - step_size ) > = step_size ) {
accumulator_time - = step_size ;
// ==== DELTA TIME LOCKED ====
}
float l [ ] = {
light [ 9 ] * sin ( delta_time ) + light [ 7 ] * cos ( delta_time ) ,
light [ 8 ] ,
light [ 9 ] * cos ( delta_time ) - light [ 7 ] * sin ( delta_time )
} ;
float l2 [ ] = {
l [ 0 ] * cos ( delta_time ) - l [ 2 ] * sin ( delta_time ) ,
l [ 0 ] * sin ( delta_time ) + l [ 2 ] * cos ( delta_time ) ,
l [ 2 ]
} ;
light [ 7 ] = l [ 0 ] ;
light [ 8 ] = l [ 1 ] ;
light [ 9 ] = l [ 2 ] ;
// ==== FPS LOCKED ====
camera . update ( delta_time ) ;
// Run the raycast
c . run_kernel ( " min_kern " , WORK_SIZE ) ;
// ==== RENDER ====
window . clear ( sf : : Color : : Black ) ;
window . draw ( s ) ;
// Give the frame counter the frame time and draw the average frame time
fps . frame ( delta_time ) ;
fps . draw ( & window ) ;
cam_text_x . draw ( & window ) ;
cam_text_y . draw ( & window ) ;
cam_text_mov_x . draw ( & window ) ;
cam_text_mov_y . draw ( & window ) ;
cam_text_mov_z . draw ( & window ) ;
light_x . draw ( & window ) ;
light_y . draw ( & window ) ;
light_z . draw ( & window ) ;
window . display ( ) ;
}
Map m ( sf : : Vector3i ( 50 , 50 , 50 ) ) ;
m . generate_octree ( ) ;
return 1 ;
//sf::RenderWindow window(sf::VideoMode(WINDOW_X, WINDOW_Y), "SFML");
//// Setup CL, instantiate and pass in values to the kernel
//CL_Wrapper c;
//query_platform_devices();
//c.acquire_platform_and_device();
//c.create_shared_context();
//c.create_command_queue();
//if (c.compile_kernel("../kernels/ray_caster_kernel.cl", true, "min_kern") < 0) {
// std::cin.get();
// return -1;
//}
//
//std::cout << "map...";
// sf::Vector3i map_dim(MAP_X, MAP_Y, MAP_Z);
// Map* map = new Map(map_dim);
//
//c.create_buffer("map_buffer", sizeof(char) * map_dim.x * map_dim.y * map_dim.z, map->list);
//c.create_buffer("dim_buffer", sizeof(int) * 3, &map_dim);
//sf::Vector2i view_res(WINDOW_X, WINDOW_Y);
//c.create_buffer("res_buffer", sizeof(int) * 2, &view_res);
//
// double y_increment_radians = DegreesToRadians(50.0 / view_res.y);
// double x_increment_radians = DegreesToRadians(80.0 / view_res.x);
//std::cout << "view matrix...";
//
//sf::Vector4f* view_matrix = new sf::Vector4f[WINDOW_X * WINDOW_Y * 4];
// for (int y = -view_res.y / 2; y < view_res.y / 2; y++) {
// for (int x = -view_res.x / 2; x < view_res.x / 2; x++) {
// // The base ray direction to slew from
// sf::Vector3f ray(1, 0, 0);
// // Y axis, pitch
// ray = sf::Vector3f(
// ray.z * sin(y_increment_radians * y) + ray.x * cos(y_increment_radians * y),
// ray.y,
// ray.z * cos(y_increment_radians * y) - ray.x * sin(y_increment_radians * y)
// );
// // Z axis, yaw
// ray = sf::Vector3f(
// ray.x * cos(x_increment_radians * x) - ray.y * sin(x_increment_radians * x),
// ray.x * sin(x_increment_radians * x) + ray.y * cos(x_increment_radians * x),
// ray.z
// );
//
// int index = (x + view_res.x / 2) + view_res.x * (y + view_res.y / 2);
// ray = Normalize(ray);
// view_matrix[index] = sf::Vector4f(
// ray.x,
// ray.y,
// ray.z,
// 0
// );
// }
// }
//c.create_buffer("view_matrix_buffer", sizeof(float) * 4 * view_res.x * view_res.y, view_matrix);
//Camera camera(
// sf::Vector3f(70, 60, 50),
// sf::Vector2f(0.0f, 1.00f)
//);
//
//c.create_buffer("cam_dir_buffer", sizeof(float) * 4, (void*)camera.get_direction_pointer(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR);
//c.create_buffer("cam_pos_buffer", sizeof(float) * 4, (void*)camera.get_position_pointer(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR);
//
//int light_count = 2;
//c.create_buffer("light_count_buffer", sizeof(int), &light_count);
//// {r, g, b, i, x, y, z, x', y', z'}
//sf::Vector3f v = Normalize(sf::Vector3f(1.0, 0.0, 0.0));
//sf::Vector3f v2 = Normalize(sf::Vector3f(1.1, 0.4, 0.7));
//float light[] = { 0.4, 0.8, 0.1, 1, 50, 50, 50, v.x, v.y, v.z,
// 0.4, 0.8, 0.1, 1, 50, 50, 50, v2.x, v2.y, v2.z};
//c.create_buffer("light_buffer", sizeof(float) * 10 * light_count, light, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR);
//// The drawing canvas
// unsigned char* pixel_array = new sf::Uint8[WINDOW_X * WINDOW_Y * 4];
// for (int i = 0; i < WINDOW_X * WINDOW_Y * 4; i += 4) {
// pixel_array[i] = 255; // R?
// pixel_array[i + 1] = 255; // G?
// pixel_array[i + 2] = 255; // B?
// pixel_array[i + 3] = 100; // A?
// }
//sf::Texture t;
// t.create(WINDOW_X, WINDOW_Y);
// t.update(pixel_array);
// int error;
// cl_mem image_buff = clCreateFromGLTexture(
// c.getContext(), CL_MEM_WRITE_ONLY, GL_TEXTURE_2D,
// 0, t.getNativeHandle(), &error);
// if (c.assert(error, "clCreateFromGLTexture"))
// return -1;
// c.store_buffer(image_buff, "image_buffer");
// c.set_kernel_arg("min_kern", 0, "map_buffer");
// c.set_kernel_arg("min_kern", 1, "dim_buffer");
// c.set_kernel_arg("min_kern", 2, "res_buffer");
// c.set_kernel_arg("min_kern", 3, "view_matrix_buffer");
// c.set_kernel_arg("min_kern", 4, "cam_dir_buffer");
// c.set_kernel_arg("min_kern", 5, "cam_pos_buffer");
//c.set_kernel_arg("min_kern", 6, "light_buffer");
//c.set_kernel_arg("min_kern", 7, "light_count_buffer");
//c.set_kernel_arg("min_kern", 8, "image_buffer");
//sf::Sprite s;
//s.setTexture(t);
//s.setPosition(0, 0);
// // The step size in milliseconds between calls to Update()
// // Lets set it to 16.6 milliseonds (60FPS)
// float step_size = 0.0166f;
// // Timekeeping values for the loop
// double frame_time = 0.0,
// elapsed_time = 0.0,
// delta_time = 0.0,
// accumulator_time = 0.0,
// current_time = 0.0;
// fps_counter fps;
//// ============================= RAYCASTER SETUP ==================================
//// Setup the sprite and texture
//window_texture.create(WINDOW_X, WINDOW_Y);
//window_sprite.setPosition(0, 0);
//// State values
//sf::Vector3f cam_vec(0, 0, 0);
//RayCaster ray_caster(map, map_dim, view_res);
//sf::Vector2f *dp = camera.get_direction_pointer();
//debug_text cam_text_x(1, 30, &dp->x, "X: ");
//debug_text cam_text_y(2, 30, &dp->y, "Y: ");
//sf::Vector3f *mp = camera.get_movement_pointer();
//debug_text cam_text_mov_x(4, 30, &mp->x, "X: ");
//debug_text cam_text_mov_y(5, 30, &mp->y, "Y: ");
//debug_text cam_text_mov_z(6, 30, &mp->y, "Z: ");
////debug_text cam_text_z(3, 30, &p->z);
//debug_text light_x(7, 30, &light[7], "X: ");
//debug_text light_y(8, 30, &light[8], "Y: ");
//debug_text light_z(9, 30, &light[9], "Z: ");
//// ===============================================================================
//// Mouse capture
//sf::Vector2i deltas;
//sf::Vector2i fixed(window.getSize());
//bool mouse_enabled = true;
//sf::Vector3f cam_mov_vec;
//while (window.isOpen()) {
// // Poll for events from the user
// sf::Event event;
// while (window.pollEvent(event)) {
// // If the user tries to exit the application via the GUI
// if (event.type == sf::Event::Closed)
// window.close();
// if (event.type == sf::Event::KeyPressed) {
// if (event.key.code == sf::Keyboard::Space) {
// if (mouse_enabled)
// mouse_enabled = false;
// else
// mouse_enabled = true;
// }
// }
// }
// cam_vec.x = 0;
// cam_vec.y = 0;
// cam_vec.z = 0;
// float speed = 1.0f;
// if (sf::Keyboard::isKeyPressed(sf::Keyboard::LShift)) {
// speed = 0.2f;
// }
// if (sf::Keyboard::isKeyPressed(sf::Keyboard::Q)) {
// camera.add_relative_impulse(Camera::DIRECTION::DOWN, speed);
// }
// if (sf::Keyboard::isKeyPressed(sf::Keyboard::E)) {
// camera.add_relative_impulse(Camera::DIRECTION::UP, speed);
// }
// if (sf::Keyboard::isKeyPressed(sf::Keyboard::W)) {
// camera.add_relative_impulse(Camera::DIRECTION::FORWARD, speed);
// }
// if (sf::Keyboard::isKeyPressed(sf::Keyboard::S)) {
// camera.add_relative_impulse(Camera::DIRECTION::REARWARD, speed);
// }
// if (sf::Keyboard::isKeyPressed(sf::Keyboard::A)) {
// camera.add_relative_impulse(Camera::DIRECTION::LEFT, speed);
// }
// if (sf::Keyboard::isKeyPressed(sf::Keyboard::D)) {
// camera.add_relative_impulse(Camera::DIRECTION::RIGHT, speed);
// }
// if (sf::Keyboard::isKeyPressed(sf::Keyboard::T)) {
// camera.set_position(sf::Vector3f(50, 50, 50));
// }
// camera.add_static_impulse(cam_vec);
// if (mouse_enabled) {
// deltas = fixed - sf::Mouse::getPosition();
// if (deltas != sf::Vector2i(0, 0) && mouse_enabled == true) {
// // Mouse movement
// sf::Mouse::setPosition(fixed);
// camera.slew_camera(sf::Vector2f(
// deltas.y / 300.0f,
// deltas.x / 300.0f
// ));
// }
// }
// // Time keeping
// elapsed_time = elap_time();
// delta_time = elapsed_time - current_time;
// current_time = elapsed_time;
// if (delta_time > 0.2f)
// delta_time = 0.2f;
// accumulator_time += delta_time;
// while ((accumulator_time - step_size) >= step_size) {
// accumulator_time -= step_size;
// // ==== DELTA TIME LOCKED ====
// }
// float l[] = {
// light[9] * sin(delta_time / 1) + light[7] * cos(delta_time / 1),
// light[8],
// light[9] * cos(delta_time / 1) - light[7] * sin(delta_time / 1)
// };
// float l2[] = {
// l[0] * cos(delta_time) - l[2] * sin(delta_time),
// l[0] * sin(delta_time) + l[2] * cos(delta_time),
// l[2]
// };
// light[7] = l[0];
// light[8] = l[1];
// light[9] = l[2];
// // ==== FPS LOCKED ====
// camera.update(delta_time);
// // Run the raycast
// c.run_kernel("min_kern", WORK_SIZE);
//
// // ==== RENDER ====
// window.clear(sf::Color::Black);
// window.draw(s);
// // Give the frame counter the frame time and draw the average frame time
// fps.frame(delta_time);
// fps.draw(&window);
// cam_text_x.draw(&window);
// cam_text_y.draw(&window);
// cam_text_mov_x.draw(&window);
// cam_text_mov_y.draw(&window);
// cam_text_mov_z.draw(&window);
// light_x.draw(&window);
// light_y.draw(&window);
// light_z.draw(&window);
//
// window.display();
//}
return 0 ;
return 0 ;
}
}