Cleaned up Map and the Octree. Did some testing and refactoring of generation code. Interleaved data is now good, also changed the block stack dealio to just a blob of uint64_t data. Used a GCC and by extension MSVC extension which speeds up count_bits by a good bit. After all optimizations, getVoxel is now around 10-15 times faster.

master
MitchellHansen 8 years ago
parent d1b9ecd3e5
commit e45df185f7

@ -19,7 +19,7 @@
#include <math.h> #include <math.h>
#define CHUNK_DIM 32 #define CHUNK_DIM 32
#define OCT_DIM 8 #define OCT_DIM 32
struct XYZHasher { struct XYZHasher {
std::size_t operator()(const sf::Vector3i& k) const { std::size_t operator()(const sf::Vector3i& k) const {
@ -31,228 +31,40 @@ struct XYZHasher {
class Octree { class Octree {
public: public:
Octree() { Octree();
// initialize the first stack block
block_stack.push_back(new uint64_t[0x8000]);
for (int i = 0; i < 0x8000; i++) {
block_stack.back()[i] = 0;
}
};
~Octree() {}; ~Octree() {};
std::list<uint64_t*> block_stack; uint64_t *blob = new uint64_t[100000];
uint64_t stack_pos = 0x8000; uint64_t stack_pos = 0x8000;
uint64_t global_pos = 0; uint64_t global_pos = 0;
uint64_t copy_to_stack(std::vector<uint64_t> children) { uint64_t copy_to_stack(std::vector<uint64_t> children);
// Check for the 15 bit boundry
if (stack_pos - children.size() > stack_pos) {
global_pos = stack_pos;
stack_pos = 0x8000;
}
else {
stack_pos -= children.size();
}
// Check for the far bit // With a position and the head of the stack. Traverse down the voxel hierarchy to find
// the IDX and stack position of the highest resolution (maybe set resolution?) oct
memcpy(&block_stack.front()[stack_pos + global_pos], children.data(), children.size() * sizeof(uint64_t)); bool get_voxel(sf::Vector3i position);
// Return the bitmask encoding the index of that value
// If we tripped the far bit, allocate a far index to the stack and place
// it one above preferably.
// And then shift the far bit to 1
// If not, shift the index to its correct place
return stack_pos;
};
int get_idx(sf::Vector3i voxel_pos) {
return 1; void print_block(int block_pos);
} private:
// (X, Y, Z) mask for the idx // (X, Y, Z) mask for the idx
uint8_t idx_set_x_mask = 0x1; const uint8_t idx_set_x_mask = 0x1;
uint8_t idx_set_y_mask = 0x2; const uint8_t idx_set_y_mask = 0x2;
uint8_t idx_set_z_mask = 0x4; const uint8_t idx_set_z_mask = 0x4;
// Mask for // Mask for
uint8_t mask_8[8] = { const uint8_t mask_8[8] = {
0x1, 0x2, 0x4, 0x8, 0x1, 0x2, 0x4, 0x8,
0x10, 0x20, 0x40, 0x80 0x10, 0x20, 0x40, 0x80
}; };
uint8_t count_mask_8[8]{ const uint8_t count_mask_8[8]{
0x1, 0x3, 0x7, 0xF, 0x1, 0x3, 0x7, 0xF,
0x1F, 0x3F, 0x7F, 0xFF 0x1F, 0x3F, 0x7F, 0xFF
}; };
//uint8_t count_mask_8[8]{
// 0xFF, 0x7F, 0x3F, 0x1F,
// 0xF, 0x7, 0x3, 0x1
//};
// With a position and the head of the stack. Traverse down the voxel hierarchy to find
// the IDX and stack position of the highest resolution (maybe set resolution?) oct
bool get_voxel(sf::Vector3i position) {
// Init the parent stack
int parent_stack_position = 0;
uint64_t parent_stack[32] = {0};
// and push the head node
uint64_t head = block_stack.front()[stack_pos];
parent_stack[parent_stack_position] = head;
// Get the index of the first child of the head node
uint64_t index = head & child_pointer_mask;
// Init the idx stack
uint8_t scale = 0;
uint8_t idx_stack[32] = {0};
// Init the idx stack (DEBUG)
std::vector<std::bitset<3>> scale_stack(static_cast<uint64_t>(log2(OCT_DIM)));
// Set our initial dimension and the position at the corner of the oct to keep track of our position
int dimension = OCT_DIM;
sf::Vector3i quad_position(0, 0, 0);
// While we are not at the required resolution
// Traverse down by setting the valid/leaf mask to the subvoxel
// Check to see if it is valid
// Yes?
// Check to see if it is a leaf
// No? Break
// Yes? Scale down to the next hierarchy, push the parent to the stack
//
// No?
// Break
while (dimension > 1) {
// So we can be a little bit tricky here and increment our
// array index that holds our masks as we build the idx.
// Adding 1 for X, 2 for Y, and 4 for Z
int mask_index = 0;
// Do the logic steps to find which sub oct we step down into
if (position.x >= (dimension / 2) + quad_position.x) {
// Set our voxel position to the (0,0) of the correct oct
quad_position.x += (dimension / 2);
// increment the mask index and mentioned above
mask_index += 1;
// Set the idx to represent the move
idx_stack[scale] |= idx_set_x_mask;
// Debug
scale_stack.at(static_cast<uint64_t>(log2(OCT_DIM) - log2(dimension))).set(0);
}
if (position.y >= (dimension / 2) + quad_position.y) {
quad_position.y |= (dimension / 2);
mask_index += 2;
idx_stack[scale] ^= idx_set_y_mask;
scale_stack.at(static_cast<uint64_t>(log2(OCT_DIM) - log2(dimension))).set(1);
}
if (position.z >= (dimension / 2) + quad_position.z) {
quad_position.z += (dimension / 2);
mask_index += 4;
idx_stack[scale] |= idx_set_z_mask;
scale_stack.at(static_cast<uint64_t>(log2(OCT_DIM) - log2(dimension))).set(2);
}
uint64_t out1 = (head >> 16) & mask_8[mask_index];
uint64_t out2 = (head >> 24) & mask_8[mask_index];
// Check to see if we are on a valid oct
if ((head >> 16) & mask_8[mask_index]) {
// Check to see if it is a leaf
if ((head >> 24) & mask_8[mask_index]) {
// If it is, then we cannot traverse further as CP's won't have been generated
return true;
break;
}
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
scale++;
dimension /= 2;
// We also need to traverse to the correct child pointer
// Count the number of non-leaf octs that come before and add it to the index to get the position
int i1 = count_bits((uint8_t)(head >> 16) & count_mask_8[0]);
int i2 = count_bits((uint8_t)(head >> 16) & count_mask_8[1]);
int i3 = count_bits((uint8_t)(head >> 16) & count_mask_8[2]);
int i4 = count_bits((uint8_t)(head >> 16) & count_mask_8[3]);
int i5 = count_bits((uint8_t)(head >> 16) & count_mask_8[4]);
int i6 = count_bits((uint8_t)(head >> 16) & count_mask_8[5]);
int i7 = count_bits((uint8_t)(head >> 16) & count_mask_8[6]);
int i8 = count_bits((uint8_t)(head >> 16) & count_mask_8[7]);
int count = count_bits((uint8_t)(head >> 16) & count_mask_8[mask_index]);
// Because we are getting the position at the first child we need to back up one
// Or maybe it's because my count bits function is wrong...
index = (head & child_pointer_mask) + count - 1;
head = block_stack.front()[index];
// Increment the parent stack position and put the new oct node as the parent
parent_stack_position++;
parent_stack[parent_stack_position] = block_stack.front()[index];
} else {
// If the oct was not valid, then no CP's exists any further
// This implicitly says that if it's non-valid then it must be a leaf!!
// It appears that the traversal is now working but I need
// to focus on how to now take care of the end condition.
// Currently it adds the last parent on the second to lowest
// oct CP. Not sure if thats correct
return false;
break;
}
}
std::bitset<64> t(index);
auto val = t.count();
return true;
}
void print_block(int block_pos) {
std::stringstream sss;
for (int i = 0; i < (int)pow(2, 15); i++) {
PrettyPrintUINT64(block_stack.front()[i], &sss);
sss << "\n";
}
DumpLog(&sss, "raw_data.txt");
}
private:
const uint64_t child_pointer_mask = 0x0000000000007fff; const uint64_t child_pointer_mask = 0x0000000000007fff;
const uint64_t far_bit_mask = 0x8000; const uint64_t far_bit_mask = 0x8000;
const uint64_t valid_mask = 0xFF0000; const uint64_t valid_mask = 0xFF0000;
@ -266,16 +78,9 @@ private:
class Map { class Map {
public: public:
Map(sf::Vector3i position); Map(sf::Vector3i position);
void generate_octree();
void load_unload(sf::Vector3i world_position);
void load_single(sf::Vector3i world_position);
sf::Vector3i getDimensions(); void generate_octree();
char *list;
//sf::Vector3i dimensions;
void setVoxel(sf::Vector3i position, int val); void setVoxel(sf::Vector3i position, int val);
@ -284,28 +89,20 @@ public:
bool getVoxel(sf::Vector3i pos); bool getVoxel(sf::Vector3i pos);
Octree a; Octree a;
sf::Vector3f global_light;
void test_map(); void test_map();
protected:
private: private:
// DEBUG // ======= DEBUG ===========
int counter = 0; int counter = 0;
std::stringstream output_stream; std::stringstream output_stream;
// =========================
// !DEBUG
uint64_t generate_children(sf::Vector3i pos, int dim); uint64_t generate_children(sf::Vector3i pos, int dim);
char* voxel_data = new char[OCT_DIM * OCT_DIM * OCT_DIM]; char* voxel_data = new char[OCT_DIM * OCT_DIM * OCT_DIM];
//std::unordered_map<sf::Vector3i, Chunk, XYZHasher> chunk_map;
double* height_map; double* height_map;
// 2^k // 2^k

@ -13,6 +13,7 @@
#include <algorithm> #include <algorithm>
#include <imgui/imgui.h> #include <imgui/imgui.h>
const double PI = 3.141592653589793238463; const double PI = 3.141592653589793238463;
const float PI_F = 3.14159265358979f; const float PI_F = 3.14159265358979f;
struct fps_counter { struct fps_counter {
@ -262,25 +263,35 @@ inline std::vector<float> sfml_get_float_input(sf::RenderWindow *window) {
} }
#ifdef _MSC_VER
# include <intrin.h>
# define __builtin_popcount _mm_popcnt_u32
# define __builtin_popcountll _mm_popcnt_u64
#endif
inline int count_bits(int32_t v) { inline int count_bits(int32_t v) {
v = v - ((v >> 1) & 0x55555555); // reuse input as temporary return static_cast<int>(__builtin_popcount(v));
v = (v & 0x33333333) + ((v >> 2) & 0x33333333); // temp
return (((v + (v >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24; // count //v = v - ((v >> 1) & 0x55555555); // reuse input as temporary
//v = (v & 0x33333333) + ((v >> 2) & 0x33333333); // temp
//return (((v + (v >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24; // count
} }
inline int count_bits(int64_t v) { inline int count_bits(int64_t v) {
int32_t left = (int32_t)(v); return static_cast<int>(__builtin_popcountll(v));
int32_t right = (int32_t)(v >> 32);
//int32_t left = (int32_t)(v);
//int32_t right = (int32_t)(v >> 32);
left = left - ((left >> 1) & 0x55555555); // reuse input as temporary //left = left - ((left >> 1) & 0x55555555); // reuse input as temporary
left = (left & 0x33333333) + ((left >> 2) & 0x33333333); // temp //left = (left & 0x33333333) + ((left >> 2) & 0x33333333); // temp
left = ((left + (left >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; // count //left = ((left + (left >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; // count
right = right - ((right >> 1) & 0x55555555); // reuse input as temporary //right = right - ((right >> 1) & 0x55555555); // reuse input as temporary
right = (right & 0x33333333) + ((right >> 2) & 0x33333333); // temp //right = (right & 0x33333333) + ((right >> 2) & 0x33333333); // temp
right = ((right + (right >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; // count //right = ((right + (right >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; // count
return left + right; //return left + right;
} }

@ -68,28 +68,15 @@ bool IsLeaf(const uint64_t descriptor) {
Map::Map(sf::Vector3i position) { Map::Map(sf::Vector3i position) {
//srand(time(NULL)); srand(time(NULL));
//load_unload(position);
for (int i = 0; i < OCT_DIM * OCT_DIM * OCT_DIM; i++) { for (int i = 0; i < OCT_DIM * OCT_DIM * OCT_DIM; i++) {
if (rand() % 25 > 1) if (rand() % 25 < 2)
voxel_data[i] = 1; voxel_data[i] = 1;
else else
voxel_data[i] = 1; voxel_data[i] = 0;
} }
//voxel_data[1 + OCT_DIM * (0 + OCT_DIM * 0)] = 0;
//voxel_data[1 + OCT_DIM * (1 + OCT_DIM * 0)] = 0;
//voxel_data[1 + OCT_DIM * (0 + OCT_DIM * 1)] = 0;
//voxel_data[1 + OCT_DIM * (1 + OCT_DIM * 1)] = 0;
//voxel_data[0 + OCT_DIM * (0 + OCT_DIM * 0)] = 0;
//voxel_data[0 + OCT_DIM * (1 + OCT_DIM * 0)] = 0;
//voxel_data[0 + OCT_DIM * (0 + OCT_DIM * 1)] = 0;
//voxel_data[0 + OCT_DIM * (1 + OCT_DIM * 1)] = 0;
} }
uint64_t Map::generate_children(sf::Vector3i pos, int voxel_scale) { uint64_t Map::generate_children(sf::Vector3i pos, int voxel_scale) {
@ -108,72 +95,73 @@ uint64_t Map::generate_children(sf::Vector3i pos, int voxel_scale) {
sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z + voxel_scale) sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z + voxel_scale)
}; };
// If we hit the 1th voxel scale then we need to query the 3D grid
// and get the voxel at that position. I assume in the future when I
// want to do chunking / loading of raw data I can edit the voxel access
if (voxel_scale == 1) { if (voxel_scale == 1) {
// Return the base 2x2 leaf node //
uint64_t tmp = 0; uint64_t child_descriptor = 0;
// These don't bound check, should they?
// Setting the individual valid mask bits // Setting the individual valid mask bits
// These don't bound check, should they?
for (int i = 0; i < v.size(); i++) { for (int i = 0; i < v.size(); i++) {
if (getVoxel(v.at(i))) if (getVoxel(v.at(i)))
SetBit(i + 16, &tmp); SetBit(i + 16, &child_descriptor);
} }
// Set the leaf mask to full // We are querying leafs, so we need to fill the leaf mask
tmp |= 0xFF000000; child_descriptor |= 0xFF000000;
// This is where contours
// The CP will be left blank, contours will be added maybe // The CP will be left blank, contours will be added maybe
return tmp; return child_descriptor;
} }
else {
uint64_t tmp = 0; // Init a blank child descriptor for this node
uint64_t child = 0; uint64_t child_descriptor = 0;
std::vector<uint64_t> children; std::vector<uint64_t> descriptor_array;
// Generate down the recursion, returning the descriptor of the current node // Generate down the recursion, returning the descriptor of the current node
for (int i = 0; i < v.size(); i++) { for (int i = 0; i < v.size(); i++) {
uint64_t child = 0;
// Get the child descriptor from the i'th to 8th subvoxel // Get the child descriptor from the i'th to 8th subvoxel
child = generate_children(v.at(i), voxel_scale / 2); child = generate_children(v.at(i), voxel_scale / 2);
// // =========== Debug ===========
PrettyPrintUINT64(child, &output_stream); PrettyPrintUINT64(child, &output_stream);
output_stream << " " << voxel_scale << " " << counter++ << std::endl; output_stream << " " << voxel_scale << " " << counter++ << std::endl;
// =============================
if (IsLeaf(child)) { // If the child is a leaf (contiguous) of non-valid values
if (CheckLeafSign(child)) { if (IsLeaf(child) && !CheckLeafSign(child)) {
SetBit(i + 16, &tmp); // Leave the valid mask 0, set leaf mask to 1
children.push_back(child); SetBit(i + 16 + 8, &child_descriptor);
} else {
SetBit(i + 16 + 8, &tmp);
}
} }
// If the child is valid and not a leaf
else { else {
SetBit(i + 16, &tmp);
children.push_back(child); // Set the valid mask, and add it to the descriptor array
SetBit(i + 16, &child_descriptor);
descriptor_array.push_back(child);
} }
} }
// Now put those values onto the block stack, it returns the // Any free space between the child descriptors must be added here in order to
// 16 bit topmost pointer to the block. The 16th bit being // interlace them and allow the memory handler to work correctly.
// a switch to jump to a far pointer.
int y = 0;
tmp |= a.copy_to_stack(children);
if ((tmp & 0xFFFFFFFF00000000) != 0) {
abort();
}
return tmp; // Copy the children to the stack and set the child_descriptors pointer to the correct value
child_descriptor |= a.copy_to_stack(descriptor_array);
} // Free space may also be allocated here as well
return 0; // Return the node up the stack
return child_descriptor;
} }
void Map::generate_octree() { void Map::generate_octree() {
@ -183,94 +171,76 @@ void Map::generate_octree() {
uint64_t root_node = generate_children(sf::Vector3i(0, 0, 0), OCT_DIM/2); uint64_t root_node = generate_children(sf::Vector3i(0, 0, 0), OCT_DIM/2);
uint64_t tmp = 0; uint64_t tmp = 0;
PrettyPrintUINT64(root_node, &output_stream); // ========= DEBUG ==============
output_stream << " " << OCT_DIM << " " << counter++ << std::endl; // PrettyPrintUINT64(root_node, &output_stream);
// output_stream << " " << OCT_DIM << " " << counter++ << std::endl;
// ==============================
int position = a.copy_to_stack(std::vector<uint64_t>{root_node});
if (IsLeaf(root_node)) { // Dump the debug log
if (CheckLeafSign(root_node)) // DumpLog(&output_stream, "raw_output.txt");
SetBit(0 + 16, &tmp);
SetBit(0 + 16 + 8, &tmp);
} }
else { void Map::setVoxel(sf::Vector3i world_position, int val) {
SetBit(0 + 16, &tmp);
} }
tmp |= a.copy_to_stack(std::vector<uint64_t>{root_node}); char Map::getVoxelFromOctree(sf::Vector3i position)
{
DumpLog(&output_stream, "raw_output.txt"); return a.get_voxel(position);
}
a.print_block(0); bool Map::getVoxel(sf::Vector3i pos){
if (voxel_data[pos.x + OCT_DIM * (pos.y + OCT_DIM * pos.z)]) {
return true;
} else {
return false;
}
} }
void Map::load_unload(sf::Vector3i world_position) { void Map::test_map() {
//sf::Vector3i chunk_pos(world_to_chunk(world_position)); std::cout << "Validating map..." << std::endl;
//
////Don't forget the middle chunk
//if (chunk_map.find(chunk_pos) == chunk_map.end()) {
// chunk_map[chunk_pos] = Chunk(5);
//}
//for (int x = chunk_pos.x - chunk_radius / 2; x < chunk_pos.x + chunk_radius / 2; x++) { for (int x = 0; x < OCT_DIM; x++) {
// for (int y = chunk_pos.y - chunk_radius / 2; y < chunk_pos.y + chunk_radius / 2; y++) { for (int y = 0; y < OCT_DIM; y++) {
// for (int z = chunk_pos.z - chunk_radius / 2; z < chunk_pos.z + chunk_radius / 2; z++) { for (int z = 0; z < OCT_DIM; z++) {
// if (chunk_map.find(sf::Vector3i(x, y, z)) == chunk_map.end()) { sf::Vector3i pos(x, y, z);
// chunk_map.emplace(sf::Vector3i(x, y, z), Chunk(rand() % 6));
// //chunk_map[sf::Vector3i(x, y, z)] = Chunk(rand() % 6);
// }
// }
// }
//}
}
void Map::load_single(sf::Vector3i world_position) { bool arr1 = getVoxel(pos);
//sf::Vector3i chunk_pos(world_to_chunk(world_position)); bool arr2 = getVoxelFromOctree(pos);
////Don't forget the middle chunk if (arr1 != arr2) {
//if (chunk_map.find(chunk_pos) == chunk_map.end()) { std::cout << "X: " << pos.x << "Y: " << pos.y << "Z: " << pos.z << std::endl;
// chunk_map[chunk_pos] = Chunk(0);
//}
} }
sf::Vector3i Map::getDimensions() { }
return sf::Vector3i(0, 0, 0); }
} }
void Map::setVoxel(sf::Vector3i world_position, int val) { std::cout << "Done" << std::endl;
//load_single(world_position); sf::Clock timer;
//sf::Vector3i chunk_pos(world_to_chunk(world_position));
//sf::Vector3i in_chunk_pos(
// world_position.x % CHUNK_DIM,
// world_position.y % CHUNK_DIM,
// world_position.z % CHUNK_DIM
//);
//chunk_map.at(chunk_pos).voxel_data[in_chunk_pos.x + CHUNK_DIM * (in_chunk_pos.y + CHUNK_DIM * in_chunk_pos.z)] timer.restart();
// = val;
} for (int x = 0; x < OCT_DIM; x++) {
for (int y = 0; y < OCT_DIM; y++) {
char Map::getVoxelFromOctree(sf::Vector3i position) for (int z = 0; z < OCT_DIM; z++) {
{
return a.get_voxel(position);
}
bool Map::getVoxel(sf::Vector3i pos){ sf::Vector3i pos(x, y, z);
if (voxel_data[pos.x + OCT_DIM * (pos.y + OCT_DIM * pos.z)]) { bool arr2 = getVoxelFromOctree(pos);
return true; }
} else {
return false;
} }
} }
void Map::test_map() { std::cout << "Octree linear xyz access : ";
std::cout << timer.restart().asMicroseconds() << " microseconds" << std::endl;
for (int x = 0; x < OCT_DIM; x++) { for (int x = 0; x < OCT_DIM; x++) {
for (int y = 0; y < OCT_DIM; y++) { for (int y = 0; y < OCT_DIM; y++) {
@ -279,17 +249,178 @@ void Map::test_map() {
sf::Vector3i pos(x, y, z); sf::Vector3i pos(x, y, z);
bool arr1 = getVoxel(pos); bool arr1 = getVoxel(pos);
bool arr2 = getVoxelFromOctree(pos); }
}
}
std::cout << "Array linear xyz access : ";
std::cout << timer.restart().asMicroseconds() << " microseconds" << std::endl;
}
Octree::Octree() {
// initialize the first stack block
for (int i = 0; i < 0x8000; i++) {
blob[i] = 0;
}
}
uint64_t Octree::copy_to_stack(std::vector<uint64_t> children) {
// Check for the 15 bit boundry
if (stack_pos - children.size() > stack_pos) {
global_pos = stack_pos;
stack_pos = 0x8000;
}
else {
stack_pos -= children.size();
}
// Check for the far bit
memcpy(&blob[stack_pos + global_pos], children.data(), children.size() * sizeof(uint64_t));
// Return the bitmask encoding the index of that value
// If we tripped the far bit, allocate a far index to the stack and place
// it at the bottom of the child_descriptor node level array
// And then shift the far bit to 1
// If not, shift the index to its correct place
return stack_pos;
}
bool Octree::get_voxel(sf::Vector3i position) {
// Init the parent stack
int parent_stack_position = 0;
uint64_t parent_stack[32] = { 0 };
// and push the head node
uint64_t head = blob[stack_pos];
parent_stack[parent_stack_position] = head;
// Get the index of the first child of the head node
uint64_t index = head & child_pointer_mask;
// Init the idx stack
uint8_t scale = 0;
uint8_t idx_stack[32] = { 0 };
// Init the idx stack (DEBUG)
//std::vector<std::bitset<3>> scale_stack(static_cast<uint64_t>(log2(OCT_DIM)));
// Set our initial dimension and the position at the corner of the oct to keep track of our position
int dimension = OCT_DIM;
sf::Vector3i quad_position(0, 0, 0);
// While we are not at the required resolution
// Traverse down by setting the valid/leaf mask to the subvoxel
// Check to see if it is valid
// Yes?
// Check to see if it is a leaf
// No? Break
// Yes? Scale down to the next hierarchy, push the parent to the stack
//
// No?
// Break
while (dimension > 1) {
// So we can be a little bit tricky here and increment our
// array index that holds our masks as we build the idx.
// Adding 1 for X, 2 for Y, and 4 for Z
int mask_index = 0;
// Do the logic steps to find which sub oct we step down into
if (position.x >= (dimension / 2) + quad_position.x) {
// Set our voxel position to the (0,0) of the correct oct
quad_position.x += (dimension / 2);
// increment the mask index and mentioned above
mask_index += 1;
// Set the idx to represent the move
idx_stack[scale] |= idx_set_x_mask;
// Debug
//scale_stack.at(static_cast<uint64_t>(log2(OCT_DIM) - log2(dimension))).set(0);
if (arr1 != arr2) {
std::cout << "MISMATCH" << std::endl;
} }
if (position.y >= (dimension / 2) + quad_position.y) {
quad_position.y |= (dimension / 2);
mask_index += 2;
idx_stack[scale] ^= idx_set_y_mask;
//scale_stack.at(static_cast<uint64_t>(log2(OCT_DIM) - log2(dimension))).set(1);
} }
if (position.z >= (dimension / 2) + quad_position.z) {
quad_position.z += (dimension / 2);
mask_index += 4;
idx_stack[scale] |= idx_set_z_mask;
//scale_stack.at(static_cast<uint64_t>(log2(OCT_DIM) - log2(dimension))).set(2);
} }
uint64_t out1 = (head >> 16) & mask_8[mask_index];
uint64_t out2 = (head >> 24) & mask_8[mask_index];
// Check to see if we are on a valid oct
if ((head >> 16) & mask_8[mask_index]) {
// Check to see if it is a leaf
if ((head >> 24) & mask_8[mask_index]) {
// If it is, then we cannot traverse further as CP's won't have been generated
return true;
} }
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
scale++;
dimension /= 2;
std::cout << "\nGOOD" << std::endl; // Count the number of valid octs that come before and add it to the index to get the position
int count = count_bits((uint8_t)(head >> 16) & count_mask_8[mask_index]);
// Because we are getting the position at the first child we need to back up one
// Or maybe it's because my count bits function is wrong...
index = (head & child_pointer_mask) + count - 1;
head = blob[index];
// Increment the parent stack position and put the new oct node as the parent
parent_stack_position++;
parent_stack[parent_stack_position] = head;
}
else {
// If the oct was not valid, then no CP's exists any further
// This implicitly says that if it's non-valid then it must be a leaf!!
// It appears that the traversal is now working but I need
// to focus on how to now take care of the end condition.
// Currently it adds the last parent on the second to lowest
// oct CP. Not sure if thats correct
return false;
}
}
return true;
}
void Octree::print_block(int block_pos) {
std::stringstream sss;
for (int i = block_pos; i < (int)pow(2, 15); i++) {
PrettyPrintUINT64(blob[i], &sss);
sss << "\n";
}
DumpLog(&sss, "raw_data.txt");
} }

@ -15,7 +15,9 @@ Ray::Ray(
this->map = map; this->map = map;
origin = camera_position; origin = camera_position;
direction = ray_direction; direction = ray_direction;
dimensions = map->getDimensions();
// TODO: Had to break this while refactoring map
dimensions = sf::Vector3i(0, 0, 0); // map->getDimensions();
} }
sf::Color Ray::Cast() { sf::Color Ray::Cast() {
@ -105,23 +107,25 @@ sf::Color Ray::Cast() {
// If we hit a voxel // If we hit a voxel
int index = voxel.x + dimensions.x * (voxel.y + dimensions.z * voxel.z); int index = voxel.x + dimensions.x * (voxel.y + dimensions.z * voxel.z);
int voxel_data = map->list[index];
// TODO: Had to break this while refactoring map
int voxel_data = 0; // map->list[index];
float alpha = 0; float alpha = 0;
if (face == 0) { if (face == 0) {
alpha = AngleBetweenVectors(sf::Vector3f(1, 0, 0), map->global_light); //alpha = AngleBetweenVectors(sf::Vector3f(1, 0, 0), map->global_light);
alpha = static_cast<float>(fmod(alpha, 0.785) * 2); alpha = static_cast<float>(fmod(alpha, 0.785) * 2);
} else if (face == 1) { } else if (face == 1) {
alpha = AngleBetweenVectors(sf::Vector3f(0, 1, 0), map->global_light); //alpha = AngleBetweenVectors(sf::Vector3f(0, 1, 0), map->global_light);
alpha = static_cast<float>(fmod(alpha, 0.785) * 2); alpha = static_cast<float>(fmod(alpha, 0.785) * 2);
} else if (face == 2){ } else if (face == 2){
//alpha = 1.57 / 2; //alpha = 1.57 / 2;
alpha = AngleBetweenVectors(sf::Vector3f(0, 0, 1), map->global_light); //alpha = AngleBetweenVectors(sf::Vector3f(0, 0, 1), map->global_light);
alpha = static_cast<float>(fmod(alpha, 0.785) * 2); alpha = static_cast<float>(fmod(alpha, 0.785) * 2);
} }

@ -85,6 +85,7 @@ int main() {
#elif defined _WIN32 #elif defined _WIN32
glewInit(); glewInit();
#elif defined TARGET_OS_MAC #elif defined TARGET_OS_MAC
// Do nothing, extension wrangling handled by macOS
#endif #endif
// The socket listener for interacting with the TCP streaming android controller // The socket listener for interacting with the TCP streaming android controller
@ -95,8 +96,7 @@ int main() {
// ============================= // =============================
Map _map(sf::Vector3i(0, 0, 0)); Map _map(sf::Vector3i(0, 0, 0));
_map.generate_octree(); _map.generate_octree();
std::cout << _map.a.get_voxel(sf::Vector3i(1, 1, 0)); _map.a.print_block(0);
std::cout << _map.getVoxel(sf::Vector3i(1, 1, 0));
_map.test_map(); _map.test_map();
std::cin.get(); std::cin.get();
return 0; return 0;

Loading…
Cancel
Save