Reveting to an older build. Something on the mac build stopped my card from running it.

Added camera class
Added a create_buffer method
Cleaned up much of the main function
Added Vector4 class, ported from sf::Vector3
Various other edits
master
8 years ago
parent 3220a03677
commit fecf8dd8ee

@ -1,15 +1,15 @@
uint4 white_light(uint4 input, float3 light, int3 mask) { float4 white_light(float4 input, float3 light, int3 mask) {
input.w = input.w + acos( input.w = input.w + acos(
dot( dot(
normalize(light), normalize(light),
normalize(fabs(convert_float3(mask))) normalize(fabs(convert_float3(mask)))
) )
) * 50; ) / 2;
return (input); return input;
} }
@ -25,34 +25,30 @@ __kernel void min_kern(
__write_only image2d_t image __write_only image2d_t image
){ ){
// Get the pixel position of this worker
size_t id = get_global_id(0); size_t id = get_global_id(0);
int2 pixel = {id % resolution->x, id / resolution->x}; int2 pixel = {id % resolution->x, id / resolution->x};
// Slew the ray into it's correct position based on the view matrix's starting position
// and the camera's current direction
float3 ray_dir = projection_matrix[pixel.x + resolution->x * pixel.y]; float3 ray_dir = projection_matrix[pixel.x + resolution->x * pixel.y];
// Yaw
ray_dir = (float3)( ray_dir = (float3)(
ray_dir.z * sin(cam_dir->y) + ray_dir.x * cos(cam_dir->y), ray_dir.z * sin(cam_dir->y) + ray_dir.x * cos(cam_dir->y),
ray_dir.y, ray_dir.y,
ray_dir.z * cos(cam_dir->y) - ray_dir.x * sin(cam_dir->y) ray_dir.z * cos(cam_dir->y) - ray_dir.x * sin(cam_dir->y)
); );
// Pitch
ray_dir = (float3)( ray_dir = (float3)(
ray_dir.x * cos(cam_dir->z) - ray_dir.y * sin(cam_dir->z), ray_dir.x * cos(cam_dir->z) - ray_dir.y * sin(cam_dir->z),
ray_dir.x * sin(cam_dir->z) + ray_dir.y * cos(cam_dir->z), ray_dir.x * sin(cam_dir->z) + ray_dir.y * cos(cam_dir->z),
ray_dir.z ray_dir.z
); );
// Setup the voxel step based on what direction the ray is pointing // Setup the voxel step based on what direction the ray is pointing
int3 voxel_step = {1, 1, 1}; int3 voxel_step = {1, 1, 1};
voxel_step *= (ray_dir > 0) - (ray_dir < 0); voxel_step *= (ray_dir > 0) - (ray_dir < 0);
/*voxel_step.x *= (ray_dir.x > 0) - (ray_dir.x < 0);
voxel_step.y *= (ray_dir.y > 0) - (ray_dir.y < 0);
voxel_step.z *= (ray_dir.z > 0) - (ray_dir.z < 0);*/
// Setup the voxel coords from the camera origin // Setup the voxel coords from the camera origin
int3 voxel = convert_int3(*cam_pos); int3 voxel = convert_int3(*cam_pos);
@ -64,26 +60,21 @@ __kernel void min_kern(
// for all 3 axis XYZ. // for all 3 axis XYZ.
float3 intersection_t = delta_t; float3 intersection_t = delta_t;
// Create a psuedo random number for view fog
int2 randoms = { 3, 14 }; int2 randoms = { 3, 14 };
uint seed = randoms.x + id; uint seed = randoms.x + id;
uint t = seed ^ (seed << 11); uint t = seed ^ (seed << 11);
uint result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8)); uint result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8));
// Distance a ray can travel before it terminates int max_dist = 500 + result % 50;
int max_dist = 200 + result % 50;
int dist = 0; int dist = 0;
// Bitmask to keep track of which axis was tripped
int3 mask = { 0, 0, 0 }; int3 mask = { 0, 0, 0 };
// Andrew Woo's raycasting algo // Andrew Woo's raycasting algo
do { do {
// Non-branching test of the lowest delta_t value
mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy); mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
float3 thing = delta_t * fabs(convert_float3(mask.xyz));
// Based on the result increment the voxel and intersection
intersection_t += delta_t * fabs(convert_float3(mask.xyz)); intersection_t += delta_t * fabs(convert_float3(mask.xyz));
voxel.xyz += voxel_step.xyz * mask.xyz; voxel.xyz += voxel_step.xyz * mask.xyz;
@ -91,15 +82,12 @@ __kernel void min_kern(
int3 overshoot = voxel <= *map_dim; int3 overshoot = voxel <= *map_dim;
int3 undershoot = voxel > 0; int3 undershoot = voxel > 0;
// "Sky"
if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0){ if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0){
write_imageui(image, pixel, (uint4)(135, 206, 235, 255)); write_imagef(image, pixel, (float4)(.73, .81, .89, 1.0));
return; return;
} }
// "Water"
if (undershoot.z == 0) { if (undershoot.z == 0) {
write_imageui(image, pixel, (uint4)(64, 164, 223, 255)); write_imagef(image, pixel, (float4)(.14, .30, .50, 1.0));
return; return;
} }
@ -110,23 +98,23 @@ __kernel void min_kern(
if (voxel_data != 0) { if (voxel_data != 0) {
switch (voxel_data) { switch (voxel_data) {
case 1: case 1:
write_imageui(image, pixel, (uint4)(50, 0, 0, 255)); write_imagef(image, pixel, (float4)(.50, .00, .00, 1));
return; return;
case 2: case 2:
write_imageui(image, pixel, (uint4)(0, 50, 40, 255)); write_imagef(image, pixel, (float4)(.00, .50, .40, 1.00));
return; return;
case 3: case 3:
write_imageui(image, pixel, (uint4)(0, 0, 50, 255)); write_imagef(image, pixel, (float4)(.00, .00, .50, 1.00));
return; return;
case 4: case 4:
write_imageui(image, pixel, (uint4)(25, 0, 25, 255)); write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00));
return; return;
case 5: case 5:
//write_imageui(image, pixel, (uint4)(200, 200, 200, 255)); //write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00));
write_imageui(image, pixel, white_light((uint4)(44, 176, 55, 100), (float3)(lights[7], lights[8], lights[9]), mask)); write_imagef(image, pixel, white_light((float4)(.25, .32, .14, 0.2), (float3)(lights[7], lights[8], lights[9]), mask));
return; return;
case 6: case 6:
write_imageui(image, pixel, (uint4)(30, 80, 10, 255)); write_imagef(image, pixel, (float4)(.30, .80, .10, 1.00));
return; return;
} }
} }
@ -134,6 +122,6 @@ __kernel void min_kern(
dist++; dist++;
} while (dist < max_dist); } while (dist < max_dist);
write_imageui(image, pixel, (uint4)(135, 206, 235, 255)); write_imagef(image, pixel, (float4)(.73, .81, .89, 1.0));
return; return;
} }

@ -59,9 +59,8 @@ int CL_Wrapper::acquire_platform_and_device(){
// falling back to the cpu with the fastest clock if we weren't able to find one // falling back to the cpu with the fastest clock if we weren't able to find one
device current_best_device; device current_best_device;
current_best_device.type = 0; // Set this to -1 so the first run always selects a new device current_best_device.type = -1; // Set this to -1 so the first run always selects a new device
current_best_device.clock_frequency = 0;
current_best_device.comp_units = 0;
for (auto kvp: plt_ids){ for (auto kvp: plt_ids){
@ -87,7 +86,7 @@ int CL_Wrapper::acquire_platform_and_device(){
platform_id = current_best_device.platform; platform_id = current_best_device.platform;
device_id = current_best_device.id; device_id = current_best_device.id;
return 1; return 0;
}; };
int CL_Wrapper::create_shared_context() { int CL_Wrapper::create_shared_context() {
@ -241,7 +240,7 @@ int CL_Wrapper::store_buffer(cl_mem buffer, std::string buffer_name){
int CL_Wrapper::run_kernel(std::string kernel_name, const int work_size){ int CL_Wrapper::run_kernel(std::string kernel_name, const int work_size){
const int WORKER_SIZE = 1; const int WORKER_SIZE = 10;
size_t global_work_size[1] = { static_cast<size_t>(work_size) }; size_t global_work_size[1] = { static_cast<size_t>(work_size) };
cl_kernel kernel = kernel_map.at(kernel_name); cl_kernel kernel = kernel_map.at(kernel_name);

@ -3,8 +3,6 @@
#include <cstring> #include <cstring>
#include <iostream> #include <iostream>
#include <vector> #include <vector>
#include <OpenCL/opencl.h>
#ifdef linux #ifdef linux
@ -15,8 +13,8 @@
#include <CL/opencl.h> #include <CL/opencl.h>
#elif defined TARGET_OS_MAC #elif defined TARGET_OS_MAC
#include <OpenGL/OpenGL.h> # include <OpenGL/OpenGL.h>
# include <OpenCL/opencl.h>
#endif #endif
@ -54,6 +52,7 @@ int IsExtensionSupported(
inline int test_for_gl_cl_sharing() { inline int test_for_gl_cl_sharing() {
int err = 0; int err = 0;
#if defined (__APPLE__) || defined(MACOSX) #if defined (__APPLE__) || defined(MACOSX)

@ -25,15 +25,15 @@
#include <OpenCL/cl_ext.h> #include <OpenCL/cl_ext.h>
#endif #endif
#include "TestPlatform.cpp"
#include "Map.h" #include "Map.h"
#include "Curses.h" #include "Curses.h"
#include "util.hpp" #include "util.hpp"
#include "RayCaster.h" #include "RayCaster.h"
#include "CL_Wrapper.h" #include "CL_Wrapper.h"
const int WINDOW_X = 200; const int WINDOW_X = 1000;
const int WINDOW_Y = 200; const int WINDOW_Y = 1000;
const int WORK_SIZE = WINDOW_X * WINDOW_Y;
const int MAP_X = 1024; const int MAP_X = 1024;
const int MAP_Y = 1024; const int MAP_Y = 1024;
@ -69,6 +69,7 @@ int main() {
sf::Texture t; sf::Texture t;
CL_Wrapper c; CL_Wrapper c;
query_platform_devices();
c.acquire_platform_and_device(); c.acquire_platform_and_device();
c.create_shared_context(); c.create_shared_context();
c.create_command_queue(); c.create_command_queue();
@ -139,18 +140,19 @@ int main() {
} }
} }
std::cout << "done\n"; std::cout << "done\n";
int ind = 367;
printf("%i === %f, %f, %f\n", ind, view_matrix[ind * 4 + 0], view_matrix[ind * 4 + 1], view_matrix[ind * 4 + 2]);
cl_mem view_matrix_buff = clCreateBuffer( cl_mem view_matrix_buff = clCreateBuffer(
c.getContext(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, c.getContext(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(float) * 4 * view_res.x * view_res.y, view_matrix, NULL sizeof(float) * 3 * view_res.x * view_res.y, view_matrix, NULL
); );
//sf::Vector3f cam_dir(1.0f, 0.0f, 1.00f); sf::Vector3f cam_dir(1.0f, 0.0f, 1.00f);
float cam_dir[] = {1.0f, 0.0f, 1.57f, 0.0f};
cl_mem cam_dir_buff = clCreateBuffer( cl_mem cam_dir_buff = clCreateBuffer(
c.getContext(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, c.getContext(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
sizeof(float) * 4, cam_dir, NULL sizeof(float) * 4, &cam_dir, NULL
); );
@ -219,10 +221,9 @@ int main() {
c.set_kernel_arg("min_kern", 7, "light_count_buffer"); c.set_kernel_arg("min_kern", 7, "light_count_buffer");
c.set_kernel_arg("min_kern", 8, "image_buffer"); c.set_kernel_arg("min_kern", 8, "image_buffer");
const int size = WINDOW_X * WINDOW_Y;
s.setTexture(t);
s.setTexture(t, true);
s.setPosition(0, 0);
// The step size in milliseconds between calls to Update() // The step size in milliseconds between calls to Update()
// Lets set it to 16.6 milliseonds (60FPS) // Lets set it to 16.6 milliseonds (60FPS)
@ -299,7 +300,7 @@ int main() {
cam_vec.x = -1; cam_vec.x = -1;
} }
if (sf::Keyboard::isKeyPressed(sf::Keyboard::Left)) { if (sf::Keyboard::isKeyPressed(sf::Keyboard::Left)) {
//cam_dir.z = -0.1f; cam_dir.z = -0.1f;
} }
if (sf::Keyboard::isKeyPressed(sf::Keyboard::Right)) { if (sf::Keyboard::isKeyPressed(sf::Keyboard::Right)) {
cam_vec.z = +0.1f; cam_vec.z = +0.1f;
@ -317,15 +318,15 @@ int main() {
// Mouse movement // Mouse movement
sf::Mouse::setPosition(fixed); sf::Mouse::setPosition(fixed);
cam_dir[1] -= deltas.y / 300.0f; cam_dir.y -= deltas.y / 300.0f;
cam_dir[2] -= deltas.x / 300.0f; cam_dir.z -= deltas.x / 300.0f;
} }
} }
cam_pos.x += cam_vec.x / 1.0; cam_pos.x += cam_vec.x / 1.0;
cam_pos.y += cam_vec.y / 1.0; cam_pos.y += cam_vec.y / 1.0;
cam_pos.z += cam_vec.z / 1.0; cam_pos.z += cam_vec.z / 1.0;
//std::cout << cam_vec.x << " : " << cam_vec.y << " : " << cam_vec.z << std::endl; std::cout << cam_vec.x << " : " << cam_vec.y << " : " << cam_vec.z << std::endl;
// Time keeping // Time keeping
@ -363,7 +364,7 @@ int main() {
error = clEnqueueAcquireGLObjects(c.getCommandQueue(), 1, &image_buff, 0, 0, 0); error = clEnqueueAcquireGLObjects(c.getCommandQueue(), 1, &image_buff, 0, 0, 0);
if (c.assert(error, "clEnqueueAcquireGLObjects")) if (c.assert(error, "clEnqueueAcquireGLObjects"))
return -1; return -1;
c.run_kernel("min_kern", WORK_SIZE); c.run_kernel("min_kern", size);
clFinish(c.getCommandQueue()); clFinish(c.getCommandQueue());
@ -371,6 +372,7 @@ int main() {
if (c.assert(error, "clEnqueueReleaseGLObjects")) if (c.assert(error, "clEnqueueReleaseGLObjects"))
return -1; return -1;
s.setPosition(0, 0);
window.draw(s); window.draw(s);
fps.frame(delta_time); fps.frame(delta_time);

Loading…
Cancel
Save