You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

345 lines
11 KiB

#include "map/Octree.h"
Octree::Octree() {
// initialize the the buffers to 0's
descriptor_buffer = new uint64_t[buffer_size]();
attachment_lookup = new uint32_t[buffer_size]();
attachment_buffer = new uint64_t[buffer_size]();
}
void Octree::Generate(char* data, sf::Vector3i dimensions) {
// Launch the recursive generator at (0,0,0) as the first point
// and the octree dimension as the initial block size
std::tuple<uint64_t, uint64_t> root_node = GenerationRecursion(data, dimensions, sf::Vector3i(0, 0, 0), OCT_DIM/2);
// ========= DEBUG ==============
PrettyPrintUINT64(std::get<0>(root_node), &output_stream);
output_stream << " " << OCT_DIM << " " << counter++ << std::endl;
// ==============================
// set the root nodes relative pointer to 1 because the next element will be the top of the tree, and push to the stack
std::get<0>(root_node) |= 1;
memcpy(&descriptor_buffer[descriptor_buffer_position], &std::get<0>(root_node), sizeof(uint64_t));
root_index = descriptor_buffer_position;
descriptor_buffer_position--;
DumpLog(&output_stream, "raw_output.txt");
output_stream.str("");
for (int i = 0; i < buffer_size; i++) {
PrettyPrintUINT64(descriptor_buffer[i], &output_stream);
}
DumpLog(&output_stream, "raw_data.txt");
}
OctState Octree::GetVoxel(sf::Vector3i position) {
// Struct that holds the state necessary to continue the traversal from the found voxel
OctState state;
// push the root node to the parent stack
uint64_t current_index = root_index;
uint64_t head = descriptor_buffer[current_index];
//PrettyPrintUINT64(head);
state.parent_stack[state.parent_stack_position] = head;
// Set our initial dimension and the position at the corner of the oct to keep track of our position
int dimension = OCT_DIM;
sf::Vector3i quad_position(0, 0, 0);
// While we are not at the required resolution
// Traverse down by setting the valid/leaf mask to the subvoxel
// Check to see if it is valid
// Yes?
// Check to see if it is a leaf
// No? Break
// Yes? Scale down to the next hierarchy, push the parent to the stack
//
// No?
// Break
while (dimension > 1) {
// So we can be a little bit tricky here and increment our
// array index that holds our masks as we build the idx.
// Adding 1 for X, 2 for Y, and 4 for Z
int mask_index = 0;
// Do the logic steps to find which sub oct we step down into
if (position.x >= (dimension / 2) + quad_position.x) {
// Set our voxel position to the (0,0) of the correct oct
quad_position.x += (dimension / 2);
// increment the mask index and mentioned above
mask_index += 1;
// Set the idx to represent the move
state.idx_stack[state.scale] |= idx_set_x_mask;
}
if (position.y >= (dimension / 2) + quad_position.y) {
quad_position.y |= (dimension / 2);
mask_index += 2;
// TODO What is up with the binary operator on this one?
state.idx_stack[state.scale] ^= idx_set_y_mask;
}
if (position.z >= (dimension / 2) + quad_position.z) {
quad_position.z += (dimension / 2);
mask_index += 4;
state.idx_stack[state.scale] |= idx_set_z_mask;
}
// Check to see if we are on a valid oct
if ((head >> 16) & mask_8[mask_index]) {
// Check to see if it is a leaf
if ((head >> 24) & mask_8[mask_index]) {
// If it is, then we cannot traverse further as CP's won't have been generated
state.found = 1;
return state;
}
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
state.scale++;
dimension /= 2;
// Count the number of valid octs that come before and add it to the index to get the position
// Negate it by one as it counts itself
int count = count_bits((uint8_t)(head >> 16) & count_mask_8[mask_index]) - 1;
// access the element at which head points to and then add the specified number of indices
// to get to the correct child descriptor
current_index = current_index + (head & child_pointer_mask) + count;
head = descriptor_buffer[current_index];
// Increment the parent stack position and put the new oct node as the parent
state.parent_stack_position++;
state.parent_stack[state.parent_stack_position] = head;
}
else {
// If the oct was not valid, then no CP's exists any further
// This implicitly says that if it's non-valid then it must be a leaf!!
// It appears that the traversal is now working but I need
// to focus on how to now take care of the end condition.
// Currently it adds the last parent on the second to lowest
// oct CP. Not sure if thats correct
state.found = 0;
return state;
}
}
state.found = 1;
return state;
}
void Octree::print_block(int block_pos) {
std::stringstream sss;
for (int i = block_pos; i < (int)pow(2, 15); i++) {
PrettyPrintUINT64(descriptor_buffer[i], &sss);
sss << "\n";
}
DumpLog(&sss, "raw_data.txt");
}
std::tuple<uint64_t, uint64_t> Octree::GenerationRecursion(char* data, sf::Vector3i dimensions, sf::Vector3i pos, unsigned int voxel_scale) {
// The 8 subvoxel coords starting from the 1th direction, the direction of the origin of the 3d grid
// XY, Z++, XY
std::vector<sf::Vector3i> v = {
sf::Vector3i(pos.x , pos.y , pos.z),
sf::Vector3i(pos.x + voxel_scale, pos.y , pos.z),
sf::Vector3i(pos.x , pos.y + voxel_scale, pos.z),
sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z),
sf::Vector3i(pos.x , pos.y , pos.z + voxel_scale),
sf::Vector3i(pos.x + voxel_scale, pos.y , pos.z + voxel_scale),
sf::Vector3i(pos.x , pos.y + voxel_scale, pos.z + voxel_scale),
sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z + voxel_scale)
};
// A tuple holding the child descriptor that we're going to fill out and the
// absolute position of it within the descriptor buffer
std::tuple<uint64_t, uint64_t> descriptor_and_position(0, 0);
// If we hit the 1th voxel scale then we need to query the 3D grid
// and get the voxel at that position. I assume in the future when I
// want to do chunking / loading of raw data I can edit the voxel access
if (voxel_scale == 1) {
// Setting the individual valid mask bits
// These don't bound check, should they?
for (int i = 0; i < v.size(); i++) {
if (get1DIndexedVoxel(data, dimensions, v.at(i)))
SetBit(i + 16, &std::get<0>(descriptor_and_position));
}
// We are querying leafs, so we need to fill the leaf mask
std::get<0>(descriptor_and_position) |= 0xFF000000;
// The CP will be left blank, contour mask and ptr will need to
// be added here later
return descriptor_and_position;
}
std::vector<std::tuple<uint64_t, uint64_t>> descriptor_position_array;
// Generate down the recursion, returning the descriptor of the current node
for (int i = 0; i < v.size(); i++) {
std::tuple<uint64_t, uint64_t> child(0, 0);
// Get the child descriptor from the i'th to 8th subvoxel
child = GenerationRecursion(data, dimensions, v.at(i), voxel_scale / 2);
// =========== Debug ===========
PrettyPrintUINT64(std::get<0>(child), &output_stream);
output_stream << " " << voxel_scale << " " << counter++ << std::endl;
// =============================
// If the child is a leaf (contiguous) of non-valid values
if (IsLeaf(std::get<0>(child)) && !CheckLeafSign(std::get<0>(child))) {
// Leave the valid mask 0, set leaf mask to 1
SetBit(i + 16 + 8, &std::get<0>(descriptor_and_position));
}
// If the child is valid and not a leaf
else {
// Set the valid mask, and add it to the descriptor array
SetBit(i + 16, &std::get<0>(descriptor_and_position));
descriptor_position_array.push_back(child);
}
}
// We are working bottom up so we need to subtract from the stack position
// the amount of elements we want to use. In the worst case this will be
// a far pointer for ever descriptor (size * 2)
int worst_case_insertion_size = descriptor_position_array.size() * 2;
// check to see if we exceeded this page header, if so set the header and move the global position
if (page_header_counter - worst_case_insertion_size <= 0) {
// Jump to the page headers position and reset the counter
descriptor_buffer_position -= 0x8000 - page_header_counter;
page_header_counter = 0x8000;
// Fill the space with blank
memcpy(&descriptor_buffer[descriptor_buffer_position], &current_info_section_position, sizeof(uint64_t));
descriptor_buffer_position--;
}
unsigned int far_pointer_count = 0;
uint64_t far_pointer_block_position = descriptor_buffer_position;
// Count the far pointers we need to allocate
for (int i = descriptor_position_array.size() - 1; i >= 0; i--) {
// this is not the actual relative distance write, so we pessimistically guess that we will have
// the worst relative distance via the insertion size
int relative_distance = std::get<1>(descriptor_position_array.at(i)) - (descriptor_buffer_position - worst_case_insertion_size);
// check to see if we tripped the far pointer
if (relative_distance > 0x8000) {
// This is writing the ABSOLUTE POSITION for far pointers, is this what I want?
memcpy(&descriptor_buffer[descriptor_buffer_position], &std::get<1>(descriptor_position_array.at(i)), sizeof(uint64_t));
descriptor_buffer_position--;
page_header_counter--;
far_pointer_count++;
}
}
// We gotta go backwards as memcpy of a vector can be emulated by starting from the rear
for (int i = descriptor_position_array.size() - 1; i >= 0; i--) {
// just gonna redo the far pointer check loosing a couple of cycles but oh well
int relative_distance = std::get<1>(descriptor_position_array.at(i)) - descriptor_buffer_position;
uint64_t descriptor = std::get<0>(descriptor_position_array.at(i));
// check to see if the
if (relative_distance > 0x8000) {
descriptor |= far_bit_mask;
descriptor |= far_pointer_block_position;
far_pointer_block_position--;
} else if (relative_distance > 0) {
descriptor |= (uint64_t)relative_distance;
}
// We have finished building the CD so we push it onto the buffer
memcpy(&descriptor_buffer[descriptor_buffer_position], &descriptor, sizeof(uint64_t));
descriptor_buffer_position--;
page_header_counter--;
}
// The position this descriptor points to is the last one written to the stack. AKA
// the current stack position (empty slot) plus one
std::get<1>(descriptor_and_position) = descriptor_buffer_position + 1;
// Return the node up the stack
return descriptor_and_position;
}
char Octree::get1DIndexedVoxel(char* data, sf::Vector3i dimensions, sf::Vector3i position) {
return data[position.x + OCT_DIM * (position.y + OCT_DIM * position.z)];
}
bool Octree::Validate(char* data, sf::Vector3i dimensions){
// std::cout << (int)get1DIndexedVoxel(data, dimensions, sf::Vector3i(16, 16, 16)) << std::endl;
// std::cout << (int)GetVoxel(sf::Vector3i(16, 16, 16)) << std::endl;
for (int x = 0; x < OCT_DIM; x++) {
for (int y = 0; y < OCT_DIM; y++) {
for (int z = 0; z < OCT_DIM; z++) {
sf::Vector3i pos(x, y, z);
char arr_val = get1DIndexedVoxel(data, dimensions, pos);
char oct_val = GetVoxel(pos).found;
if (arr_val != oct_val) {
std::cout << "X: " << pos.x << " Y: " << pos.y << " Z: " << pos.z << " ";
std::cout << (int)arr_val << " : " << (int)oct_val << std::endl;
}
}
}
}
return true;
}