You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
345 lines
11 KiB
345 lines
11 KiB
#include "map/Octree.h"
|
|
|
|
Octree::Octree() {
|
|
|
|
// initialize the the buffers to 0's
|
|
descriptor_buffer = new uint64_t[buffer_size]();
|
|
attachment_lookup = new uint32_t[buffer_size]();
|
|
attachment_buffer = new uint64_t[buffer_size]();
|
|
}
|
|
|
|
|
|
void Octree::Generate(char* data, sf::Vector3i dimensions) {
|
|
|
|
// Launch the recursive generator at (0,0,0) as the first point
|
|
// and the octree dimension as the initial block size
|
|
std::tuple<uint64_t, uint64_t> root_node = GenerationRecursion(data, dimensions, sf::Vector3i(0, 0, 0), OCT_DIM/2);
|
|
|
|
// ========= DEBUG ==============
|
|
PrettyPrintUINT64(std::get<0>(root_node), &output_stream);
|
|
output_stream << " " << OCT_DIM << " " << counter++ << std::endl;
|
|
// ==============================
|
|
|
|
// set the root nodes relative pointer to 1 because the next element will be the top of the tree, and push to the stack
|
|
std::get<0>(root_node) |= 1;
|
|
memcpy(&descriptor_buffer[descriptor_buffer_position], &std::get<0>(root_node), sizeof(uint64_t));
|
|
|
|
root_index = descriptor_buffer_position;
|
|
descriptor_buffer_position--;
|
|
|
|
DumpLog(&output_stream, "raw_output.txt");
|
|
output_stream.str("");
|
|
|
|
for (int i = 0; i < buffer_size; i++) {
|
|
PrettyPrintUINT64(descriptor_buffer[i], &output_stream);
|
|
}
|
|
|
|
DumpLog(&output_stream, "raw_data.txt");
|
|
|
|
}
|
|
|
|
OctState Octree::GetVoxel(sf::Vector3i position) {
|
|
|
|
// Struct that holds the state necessary to continue the traversal from the found voxel
|
|
OctState state;
|
|
|
|
// push the root node to the parent stack
|
|
uint64_t current_index = root_index;
|
|
uint64_t head = descriptor_buffer[current_index];
|
|
|
|
//PrettyPrintUINT64(head);
|
|
state.parent_stack[state.parent_stack_position] = head;
|
|
|
|
// Set our initial dimension and the position at the corner of the oct to keep track of our position
|
|
int dimension = OCT_DIM;
|
|
sf::Vector3i quad_position(0, 0, 0);
|
|
|
|
// While we are not at the required resolution
|
|
// Traverse down by setting the valid/leaf mask to the subvoxel
|
|
// Check to see if it is valid
|
|
// Yes?
|
|
// Check to see if it is a leaf
|
|
// No? Break
|
|
// Yes? Scale down to the next hierarchy, push the parent to the stack
|
|
//
|
|
// No?
|
|
// Break
|
|
while (dimension > 1) {
|
|
|
|
// So we can be a little bit tricky here and increment our
|
|
// array index that holds our masks as we build the idx.
|
|
// Adding 1 for X, 2 for Y, and 4 for Z
|
|
int mask_index = 0;
|
|
|
|
|
|
// Do the logic steps to find which sub oct we step down into
|
|
if (position.x >= (dimension / 2) + quad_position.x) {
|
|
|
|
// Set our voxel position to the (0,0) of the correct oct
|
|
quad_position.x += (dimension / 2);
|
|
|
|
// increment the mask index and mentioned above
|
|
mask_index += 1;
|
|
|
|
// Set the idx to represent the move
|
|
state.idx_stack[state.scale] |= idx_set_x_mask;
|
|
|
|
}
|
|
if (position.y >= (dimension / 2) + quad_position.y) {
|
|
|
|
quad_position.y |= (dimension / 2);
|
|
|
|
mask_index += 2;
|
|
|
|
// TODO What is up with the binary operator on this one?
|
|
state.idx_stack[state.scale] ^= idx_set_y_mask;
|
|
|
|
}
|
|
if (position.z >= (dimension / 2) + quad_position.z) {
|
|
|
|
quad_position.z += (dimension / 2);
|
|
|
|
mask_index += 4;
|
|
|
|
state.idx_stack[state.scale] |= idx_set_z_mask;
|
|
|
|
}
|
|
|
|
// Check to see if we are on a valid oct
|
|
if ((head >> 16) & mask_8[mask_index]) {
|
|
|
|
// Check to see if it is a leaf
|
|
if ((head >> 24) & mask_8[mask_index]) {
|
|
|
|
// If it is, then we cannot traverse further as CP's won't have been generated
|
|
state.found = 1;
|
|
return state;
|
|
}
|
|
|
|
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
|
|
state.scale++;
|
|
dimension /= 2;
|
|
|
|
// Count the number of valid octs that come before and add it to the index to get the position
|
|
// Negate it by one as it counts itself
|
|
int count = count_bits((uint8_t)(head >> 16) & count_mask_8[mask_index]) - 1;
|
|
|
|
// access the element at which head points to and then add the specified number of indices
|
|
// to get to the correct child descriptor
|
|
current_index = current_index + (head & child_pointer_mask) + count;
|
|
head = descriptor_buffer[current_index];
|
|
|
|
// Increment the parent stack position and put the new oct node as the parent
|
|
state.parent_stack_position++;
|
|
state.parent_stack[state.parent_stack_position] = head;
|
|
|
|
}
|
|
else {
|
|
// If the oct was not valid, then no CP's exists any further
|
|
// This implicitly says that if it's non-valid then it must be a leaf!!
|
|
|
|
// It appears that the traversal is now working but I need
|
|
// to focus on how to now take care of the end condition.
|
|
// Currently it adds the last parent on the second to lowest
|
|
// oct CP. Not sure if thats correct
|
|
state.found = 0;
|
|
return state;
|
|
}
|
|
}
|
|
|
|
state.found = 1;
|
|
return state;
|
|
}
|
|
|
|
void Octree::print_block(int block_pos) {
|
|
|
|
std::stringstream sss;
|
|
for (int i = block_pos; i < (int)pow(2, 15); i++) {
|
|
PrettyPrintUINT64(descriptor_buffer[i], &sss);
|
|
sss << "\n";
|
|
}
|
|
DumpLog(&sss, "raw_data.txt");
|
|
|
|
}
|
|
|
|
std::tuple<uint64_t, uint64_t> Octree::GenerationRecursion(char* data, sf::Vector3i dimensions, sf::Vector3i pos, unsigned int voxel_scale) {
|
|
|
|
|
|
// The 8 subvoxel coords starting from the 1th direction, the direction of the origin of the 3d grid
|
|
// XY, Z++, XY
|
|
std::vector<sf::Vector3i> v = {
|
|
sf::Vector3i(pos.x , pos.y , pos.z),
|
|
sf::Vector3i(pos.x + voxel_scale, pos.y , pos.z),
|
|
sf::Vector3i(pos.x , pos.y + voxel_scale, pos.z),
|
|
sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z),
|
|
sf::Vector3i(pos.x , pos.y , pos.z + voxel_scale),
|
|
sf::Vector3i(pos.x + voxel_scale, pos.y , pos.z + voxel_scale),
|
|
sf::Vector3i(pos.x , pos.y + voxel_scale, pos.z + voxel_scale),
|
|
sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z + voxel_scale)
|
|
};
|
|
|
|
// A tuple holding the child descriptor that we're going to fill out and the
|
|
// absolute position of it within the descriptor buffer
|
|
std::tuple<uint64_t, uint64_t> descriptor_and_position(0, 0);
|
|
|
|
// If we hit the 1th voxel scale then we need to query the 3D grid
|
|
// and get the voxel at that position. I assume in the future when I
|
|
// want to do chunking / loading of raw data I can edit the voxel access
|
|
if (voxel_scale == 1) {
|
|
|
|
// Setting the individual valid mask bits
|
|
// These don't bound check, should they?
|
|
for (int i = 0; i < v.size(); i++) {
|
|
if (get1DIndexedVoxel(data, dimensions, v.at(i)))
|
|
SetBit(i + 16, &std::get<0>(descriptor_and_position));
|
|
}
|
|
|
|
// We are querying leafs, so we need to fill the leaf mask
|
|
std::get<0>(descriptor_and_position) |= 0xFF000000;
|
|
|
|
// The CP will be left blank, contour mask and ptr will need to
|
|
// be added here later
|
|
return descriptor_and_position;
|
|
|
|
}
|
|
|
|
std::vector<std::tuple<uint64_t, uint64_t>> descriptor_position_array;
|
|
|
|
// Generate down the recursion, returning the descriptor of the current node
|
|
for (int i = 0; i < v.size(); i++) {
|
|
|
|
std::tuple<uint64_t, uint64_t> child(0, 0);
|
|
|
|
// Get the child descriptor from the i'th to 8th subvoxel
|
|
child = GenerationRecursion(data, dimensions, v.at(i), voxel_scale / 2);
|
|
|
|
// =========== Debug ===========
|
|
PrettyPrintUINT64(std::get<0>(child), &output_stream);
|
|
output_stream << " " << voxel_scale << " " << counter++ << std::endl;
|
|
// =============================
|
|
|
|
// If the child is a leaf (contiguous) of non-valid values
|
|
if (IsLeaf(std::get<0>(child)) && !CheckLeafSign(std::get<0>(child))) {
|
|
// Leave the valid mask 0, set leaf mask to 1
|
|
SetBit(i + 16 + 8, &std::get<0>(descriptor_and_position));
|
|
}
|
|
|
|
// If the child is valid and not a leaf
|
|
else {
|
|
|
|
// Set the valid mask, and add it to the descriptor array
|
|
SetBit(i + 16, &std::get<0>(descriptor_and_position));
|
|
descriptor_position_array.push_back(child);
|
|
}
|
|
}
|
|
|
|
// We are working bottom up so we need to subtract from the stack position
|
|
// the amount of elements we want to use. In the worst case this will be
|
|
// a far pointer for ever descriptor (size * 2)
|
|
|
|
int worst_case_insertion_size = descriptor_position_array.size() * 2;
|
|
|
|
// check to see if we exceeded this page header, if so set the header and move the global position
|
|
if (page_header_counter - worst_case_insertion_size <= 0) {
|
|
|
|
// Jump to the page headers position and reset the counter
|
|
descriptor_buffer_position -= 0x8000 - page_header_counter;
|
|
page_header_counter = 0x8000;
|
|
|
|
// Fill the space with blank
|
|
memcpy(&descriptor_buffer[descriptor_buffer_position], ¤t_info_section_position, sizeof(uint64_t));
|
|
|
|
descriptor_buffer_position--;
|
|
|
|
}
|
|
|
|
unsigned int far_pointer_count = 0;
|
|
uint64_t far_pointer_block_position = descriptor_buffer_position;
|
|
|
|
// Count the far pointers we need to allocate
|
|
for (int i = descriptor_position_array.size() - 1; i >= 0; i--) {
|
|
|
|
// this is not the actual relative distance write, so we pessimistically guess that we will have
|
|
// the worst relative distance via the insertion size
|
|
|
|
int relative_distance = std::get<1>(descriptor_position_array.at(i)) - (descriptor_buffer_position - worst_case_insertion_size);
|
|
|
|
// check to see if we tripped the far pointer
|
|
if (relative_distance > 0x8000) {
|
|
|
|
// This is writing the ABSOLUTE POSITION for far pointers, is this what I want?
|
|
memcpy(&descriptor_buffer[descriptor_buffer_position], &std::get<1>(descriptor_position_array.at(i)), sizeof(uint64_t));
|
|
descriptor_buffer_position--;
|
|
page_header_counter--;
|
|
|
|
far_pointer_count++;
|
|
}
|
|
}
|
|
|
|
// We gotta go backwards as memcpy of a vector can be emulated by starting from the rear
|
|
for (int i = descriptor_position_array.size() - 1; i >= 0; i--) {
|
|
|
|
// just gonna redo the far pointer check loosing a couple of cycles but oh well
|
|
int relative_distance = std::get<1>(descriptor_position_array.at(i)) - descriptor_buffer_position;
|
|
|
|
uint64_t descriptor = std::get<0>(descriptor_position_array.at(i));
|
|
|
|
// check to see if the
|
|
if (relative_distance > 0x8000) {
|
|
|
|
descriptor |= far_bit_mask;
|
|
descriptor |= far_pointer_block_position;
|
|
|
|
far_pointer_block_position--;
|
|
|
|
} else if (relative_distance > 0) {
|
|
|
|
descriptor |= (uint64_t)relative_distance;
|
|
|
|
}
|
|
|
|
// We have finished building the CD so we push it onto the buffer
|
|
memcpy(&descriptor_buffer[descriptor_buffer_position], &descriptor, sizeof(uint64_t));
|
|
descriptor_buffer_position--;
|
|
page_header_counter--;
|
|
}
|
|
|
|
// The position this descriptor points to is the last one written to the stack. AKA
|
|
// the current stack position (empty slot) plus one
|
|
std::get<1>(descriptor_and_position) = descriptor_buffer_position + 1;
|
|
|
|
// Return the node up the stack
|
|
return descriptor_and_position;
|
|
}
|
|
|
|
char Octree::get1DIndexedVoxel(char* data, sf::Vector3i dimensions, sf::Vector3i position) {
|
|
return data[position.x + OCT_DIM * (position.y + OCT_DIM * position.z)];
|
|
}
|
|
|
|
bool Octree::Validate(char* data, sf::Vector3i dimensions){
|
|
|
|
// std::cout << (int)get1DIndexedVoxel(data, dimensions, sf::Vector3i(16, 16, 16)) << std::endl;
|
|
// std::cout << (int)GetVoxel(sf::Vector3i(16, 16, 16)) << std::endl;
|
|
|
|
|
|
for (int x = 0; x < OCT_DIM; x++) {
|
|
for (int y = 0; y < OCT_DIM; y++) {
|
|
for (int z = 0; z < OCT_DIM; z++) {
|
|
|
|
sf::Vector3i pos(x, y, z);
|
|
|
|
char arr_val = get1DIndexedVoxel(data, dimensions, pos);
|
|
char oct_val = GetVoxel(pos).found;
|
|
|
|
if (arr_val != oct_val) {
|
|
std::cout << "X: " << pos.x << " Y: " << pos.y << " Z: " << pos.z << " ";
|
|
std::cout << (int)arr_val << " : " << (int)oct_val << std::endl;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|