You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
130 lines
3.6 KiB
130 lines
3.6 KiB
__kernel void min_kern(
|
|
global char* map,
|
|
global int3* map_dim,
|
|
global int2* resolution,
|
|
global float3* projection_matrix,
|
|
global float3* cam_dir,
|
|
global float3* cam_pos,
|
|
__write_only image2d_t image
|
|
){
|
|
|
|
size_t id = get_global_id(0);
|
|
int2 pixel = {id % resolution->x, id / resolution->x};
|
|
float3 ray_dir = projection_matrix[pixel.x + resolution->x * pixel.y];
|
|
|
|
ray_dir = (float3)(
|
|
ray_dir.z * sin(cam_dir->y) + ray_dir.x * cos(cam_dir->y),
|
|
ray_dir.y,
|
|
ray_dir.z * cos(cam_dir->y) - ray_dir.x * sin(cam_dir->y)
|
|
);
|
|
|
|
ray_dir = (float3)(
|
|
ray_dir.x * cos(cam_dir->z) - ray_dir.y * sin(cam_dir->z),
|
|
ray_dir.x * sin(cam_dir->z) + ray_dir.y * cos(cam_dir->z),
|
|
ray_dir.z
|
|
);
|
|
|
|
// Setup the voxel step based on what direction the ray is pointing
|
|
int3 voxel_step = {1, 1, 1};
|
|
voxel_step.x *= (ray_dir.x > 0) - (ray_dir.x < 0);
|
|
voxel_step.y *= (ray_dir.y > 0) - (ray_dir.y < 0);
|
|
voxel_step.z *= (ray_dir.z > 0) - (ray_dir.z < 0);
|
|
|
|
// Setup the voxel coords from the camera origin
|
|
int3 voxel = {
|
|
floor(cam_pos->x),
|
|
floor(cam_pos->y),
|
|
floor(cam_pos->z)
|
|
};
|
|
|
|
// Delta T is the units a ray must travel along an axis in order to
|
|
// traverse an integer split
|
|
float3 delta_t = {
|
|
fabs(1.0f / ray_dir.x),
|
|
fabs(1.0f / ray_dir.y),
|
|
fabs(1.0f / ray_dir.z)
|
|
};
|
|
|
|
// Intersection T is the collection of the next intersection points
|
|
// for all 3 axis XYZ.
|
|
float3 intersection_t = {
|
|
delta_t.x,
|
|
delta_t.y,
|
|
delta_t.z
|
|
};
|
|
|
|
int2 randoms = { 3, 7 };
|
|
uint seed = randoms.x + id;
|
|
uint t = seed ^ (seed << 11);
|
|
uint result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8));
|
|
|
|
int max_dist = 500 + result % 50;
|
|
int dist = 0;
|
|
int face = -1;
|
|
// X:0, Y:1, Z:2
|
|
|
|
|
|
int3 mask = { 0, 0, 0 };
|
|
|
|
// Andrew Woo's raycasting algo
|
|
do {
|
|
|
|
mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
|
|
float3 thing = delta_t * fabs(convert_float3(mask.xyz));
|
|
intersection_t += delta_t * fabs(convert_float3(mask.xyz));
|
|
voxel.xyz += voxel_step.xyz * mask.xyz;
|
|
|
|
|
|
|
|
// If the ray went out of bounds
|
|
int3 overshoot = voxel.xyz <= map_dim->xyz;
|
|
int3 undershoot = voxel > 0;
|
|
|
|
|
|
|
|
if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0){
|
|
write_imagef(image, pixel, (float4)(.50 * abs(overshoot.x), .50 * abs(overshoot.y), .50 * abs(overshoot.z), 1));
|
|
return;
|
|
}
|
|
if (undershoot.x == 0 || undershoot.y == 0 || undershoot.z == 0) {
|
|
write_imagef(image, pixel, (float4)(.1 * abs(undershoot.x), .80 * abs(undershoot.y), .20 * abs(undershoot.z), 1));
|
|
return;
|
|
}
|
|
|
|
// If we hit a voxel
|
|
int index = voxel.x + map_dim->x * (voxel.y + map_dim->z * voxel.z);
|
|
int voxel_data = map[index];
|
|
|
|
|
|
|
|
if (voxel_data != 0) {
|
|
switch (voxel_data) {
|
|
case 1:
|
|
write_imagef(image, pixel, (float4)(.50, .00, .00, 1));
|
|
return;
|
|
case 2:
|
|
write_imagef(image, pixel, (float4)(.00, .50, .40, 1.00));
|
|
//if (id == 249000)
|
|
// printf("%i\n", voxel_data);
|
|
return;
|
|
case 3:
|
|
write_imagef(image, pixel, (float4)(.00, .00, .50, 1.00));
|
|
return;
|
|
case 4:
|
|
write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00));
|
|
return;
|
|
case 5:
|
|
write_imagef(image, pixel, (float4)(.10, .30, .80, 1.00));
|
|
return;
|
|
case 6:
|
|
write_imagef(image, pixel, (float4)(.30, .80, .10, 1.00));
|
|
return;
|
|
}
|
|
}
|
|
|
|
dist++;
|
|
} while (dist < max_dist);
|
|
|
|
write_imagef(image, pixel, (float4)(.00, .00, .00, .00));
|
|
return;
|
|
} |