You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

130 lines
3.6 KiB

__kernel void min_kern(
global char* map,
global int3* map_dim,
global int2* resolution,
global float3* projection_matrix,
global float3* cam_dir,
global float3* cam_pos,
__write_only image2d_t image
){
size_t id = get_global_id(0);
int2 pixel = {id % resolution->x, id / resolution->x};
float3 ray_dir = projection_matrix[pixel.x + resolution->x * pixel.y];
ray_dir = (float3)(
ray_dir.z * sin(cam_dir->y) + ray_dir.x * cos(cam_dir->y),
ray_dir.y,
ray_dir.z * cos(cam_dir->y) - ray_dir.x * sin(cam_dir->y)
);
ray_dir = (float3)(
ray_dir.x * cos(cam_dir->z) - ray_dir.y * sin(cam_dir->z),
ray_dir.x * sin(cam_dir->z) + ray_dir.y * cos(cam_dir->z),
ray_dir.z
);
// Setup the voxel step based on what direction the ray is pointing
int3 voxel_step = {1, 1, 1};
voxel_step.x *= (ray_dir.x > 0) - (ray_dir.x < 0);
voxel_step.y *= (ray_dir.y > 0) - (ray_dir.y < 0);
voxel_step.z *= (ray_dir.z > 0) - (ray_dir.z < 0);
// Setup the voxel coords from the camera origin
int3 voxel = {
floor(cam_pos->x),
floor(cam_pos->y),
floor(cam_pos->z)
};
// Delta T is the units a ray must travel along an axis in order to
// traverse an integer split
float3 delta_t = {
fabs(1.0f / ray_dir.x),
fabs(1.0f / ray_dir.y),
fabs(1.0f / ray_dir.z)
};
// Intersection T is the collection of the next intersection points
// for all 3 axis XYZ.
float3 intersection_t = {
delta_t.x,
delta_t.y,
delta_t.z
};
int2 randoms = { 3, 7 };
uint seed = randoms.x + id;
uint t = seed ^ (seed << 11);
uint result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8));
int max_dist = 500 + result % 50;
int dist = 0;
int face = -1;
// X:0, Y:1, Z:2
int3 mask = { 0, 0, 0 };
// Andrew Woo's raycasting algo
do {
mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
float3 thing = delta_t * fabs(convert_float3(mask.xyz));
intersection_t += delta_t * fabs(convert_float3(mask.xyz));
voxel.xyz += voxel_step.xyz * mask.xyz;
// If the ray went out of bounds
int3 overshoot = voxel.xyz <= map_dim->xyz;
int3 undershoot = voxel > 0;
if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0){
write_imagef(image, pixel, (float4)(.50 * abs(overshoot.x), .50 * abs(overshoot.y), .50 * abs(overshoot.z), 1));
return;
}
if (undershoot.x == 0 || undershoot.y == 0 || undershoot.z == 0) {
write_imagef(image, pixel, (float4)(.1 * abs(undershoot.x), .80 * abs(undershoot.y), .20 * abs(undershoot.z), 1));
return;
}
// If we hit a voxel
int index = voxel.x + map_dim->x * (voxel.y + map_dim->z * voxel.z);
int voxel_data = map[index];
if (voxel_data != 0) {
switch (voxel_data) {
case 1:
write_imagef(image, pixel, (float4)(.50, .00, .00, 1));
return;
case 2:
write_imagef(image, pixel, (float4)(.00, .50, .40, 1.00));
//if (id == 249000)
// printf("%i\n", voxel_data);
return;
case 3:
write_imagef(image, pixel, (float4)(.00, .00, .50, 1.00));
return;
case 4:
write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00));
return;
case 5:
write_imagef(image, pixel, (float4)(.10, .30, .80, 1.00));
return;
case 6:
write_imagef(image, pixel, (float4)(.30, .80, .10, 1.00));
return;
}
}
dist++;
} while (dist < max_dist);
write_imagef(image, pixel, (float4)(.00, .00, .00, .00));
return;
}