working on porting. Got some stuff cleaned up but I've broken the example I had running at one point

master
mitchellhansen 5 years ago
parent 86b4f7d9a3
commit a71958e815

@ -73,41 +73,14 @@ fn main() {
let mut processor = vkprocessor::VkProcessor::new(&instance, &surface);
processor.compile_kernel(String::from("simple-edge.compute"));
processor.load_buffers(String::from("funky-bird.jpg"));
processor.run_kernel();
processor.read_image();
processor.save_image();
processor.compile_shaders(String::from("simple"), &surface);
processor.load_buffers(String::from("funky-bird.jpg"));
let font = Font::from_file("resources/fonts/sansation.ttf").unwrap();
let mut window = RenderWindow::new(
(900, 900),
"Custom drawable",
Style::CLOSE,
&Default::default(),
);
let mut timer = Timer::new();
let mut input = Input::new();
let xy = processor.xy;
let mut workpieceloader = WorkpieceLoader::new(String::from("resources/images/funky-bird.jpg"));
workpieceloader.load_first_stage(processor.read_image());
let mut texture = Texture::from_file("resources/images/funky-bird.jpg").expect("Couldn't load image");
let mut workpiece = Workpiece::new();
workpiece.render_sprite.set_texture(&mut texture, false);
let mut slider = Slider::new(Vector2f::new(40.0, 40.0), None, &font);
let mut selected_colors = Vec::new();
let mut button = button::Button::new(Vector2f::new(40.0,40.0), Vector2f::new(100.0,100.0), &font);
button.set_text("Text");
let step_size: f32 = 0.005;
let mut elapsed_time: f32;
@ -117,54 +90,27 @@ fn main() {
let mut mouse_xy = Vector2i::new(0,0);
while window.is_open() {
while let Some(p) = window.get_position() {
// Event::MouseButtonPressed { button, x, y} => {
// let x = x as u32;
// let y = y as u32;
// mouse_xy = mouse::desktop_position();
// let r = processor.image_buffer[((processor.xy.0 * y + x) * 4 + 0) as usize] as u8;
// let g = processor.image_buffer[((processor.xy.0 * y + x) * 4 + 1) as usize] as u8;
// let b = processor.image_buffer[((processor.xy.0 * y + x) * 4 + 2) as usize] as u8;
// let a = processor.image_buffer[((processor.xy.0 * y + x) * 4 + 3) as usize] as u8;
//
// selected_colors.push(
// RectangleShape::with_size(Vector2f::new(30.0, 30.0))
// );
//
// let mut x_position = 45.0 * selected_colors.len() as f32;
//
// selected_colors.last_mut().unwrap().set_position(Vector2f::new(x_position, 80.0));
// selected_colors.last_mut().unwrap().set_fill_color(&Color::rgba(r,g,b,a));
// }
while let Some(event) = window.poll_event() {
match event {
Event::Closed => return,
Event::KeyPressed { code, .. } => {
if code == Key::Escape {
return;
}
},
Event::MouseButtonPressed { button, x, y} => {
let x = x as u32;
let y = y as u32;
mouse_xy = mouse::desktop_position();
let r = processor.image_buffer[((processor.xy.0 * y + x) * 4 + 0) as usize] as u8;
let g = processor.image_buffer[((processor.xy.0 * y + x) * 4 + 1) as usize] as u8;
let b = processor.image_buffer[((processor.xy.0 * y + x) * 4 + 2) as usize] as u8;
let a = processor.image_buffer[((processor.xy.0 * y + x) * 4 + 3) as usize] as u8;
selected_colors.push(
RectangleShape::with_size(Vector2f::new(30.0, 30.0))
);
let mut x_position = 45.0 * selected_colors.len() as f32;
selected_colors.last_mut().unwrap().set_position(Vector2f::new(x_position, 80.0));
selected_colors.last_mut().unwrap().set_fill_color(&Color::rgba(r,g,b,a));
},
Event::MouseWheelScrolled { wheel, delta, x, y } => {
if delta > 0.0 {
workpiece.render_sprite.set_scale(workpiece.render_sprite.get_scale()*Vector2f::new(1.1,1.1));
} else {
workpiece.render_sprite.set_scale(workpiece.render_sprite.get_scale()*Vector2f::new(0.9,0.9));
}
},
_ => {}
}
input.ingest(&event)
}
// Dragging by middle click
if input.is_mousebutton_held(Button::Middle) {
let delta = mouse_xy - mouse::desktop_position();
mouse_xy = mouse::desktop_position();
workpiece.render_sprite.set_position(
workpiece.render_sprite.position() - Vector2f::new(delta.x as f32, delta.y as f32)
);
}
elapsed_time = timer.elap_time();
delta_time = elapsed_time - current_time;
@ -178,18 +124,41 @@ fn main() {
accumulator_time -= step_size;
}
window.clear(&Color::BLACK);
processor.run_loop(&surface);
print!("adosfijqwe");
}
}
window.draw(&workpiece.render_sprite);
window.draw(&slider);
for i in &selected_colors {
window.draw(i);
}
window.draw(&button);
window.display();
}
}

@ -30,6 +30,7 @@ use vulkano::descriptor::PipelineLayoutAbstract;
use std::alloc::Layout;
use vulkano::pipeline::viewport::Viewport;
#[derive(Default, Debug, Clone)]
struct tVertex { position: [f32; 2] }
@ -106,12 +107,11 @@ pub struct VkProcessor<'a> {
pub xy: (u32, u32),
pub render_pass: Option<Arc<RenderPassAbstract + Send + Sync>>,
pub vertex_buffer: Option<Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync + 'static)>>,
pub dynamic_state: DynamicState,
}
impl<'a> VkProcessor<'a> {
pub fn new(instance: &'a Arc<Instance>, surface: &'a Arc<Surface<Window>>) -> VkProcessor<'a> {
let physical = PhysicalDevice::enumerate(instance).next().unwrap();
let queue_family = physical.queue_families().find(|&q| {
@ -127,7 +127,6 @@ impl<'a> VkProcessor<'a> {
physical.supported_features(),
&device_ext,
[(queue_family, 0.5)].iter().cloned()).unwrap();
let queue = queues.next().unwrap();
VkProcessor {
@ -136,7 +135,7 @@ impl<'a> VkProcessor<'a> {
pipeline: Option::None,
compute_pipeline: Option::None,
device: device,
queue: queues.next().unwrap(),
queue: queue,
queues: queues,
set: Option::None,
image_buffer: Vec::new(),
@ -147,12 +146,11 @@ impl<'a> VkProcessor<'a> {
xy: (0, 0),
render_pass: Option::None,
vertex_buffer: Option::None,
dynamic_state: DynamicState { line_width: None, viewports: None, scissors: None },
}
}
pub fn compile_kernel(&mut self, filename: String) {
let project_root =
std::env::current_dir()
.expect("failed to get root directory");
@ -198,29 +196,13 @@ impl<'a> VkProcessor<'a> {
// a swapchain allocates the color buffers that will contain the image that will ultimately
// be visible on the screen. These images are returned alongside with the swapchain.
let (mut swapchain, images) = {
// Querying the capabilities of the surface. When we create the swapchain we can only
// pass values that are allowed by the capabilities.
let capabilities = surface.capabilities(self.physical).unwrap();
let usage = capabilities.supported_usage_flags;
// The alpha mode indicates how the alpha value of the final image will behave. For example
// you can choose whether the window will be opaque or transparent.
let alpha = capabilities.supported_composite_alpha.iter().next().unwrap();
// Choosing the internal format that the images will have.
let format = capabilities.supported_formats[0].0;
// The dimensions of the window, only used to initially setup the swapchain.
// NOTE:
// On some drivers the swapchain dimensions are specified by `caps.current_extent` and the
// swapchain size must use these dimensions.
// These dimensions are always the same as the window dimensions
//
// However other drivers dont specify a value i.e. `caps.current_extent` is `None`
// These drivers will allow anything but the only sensible value is the window dimensions.
//
// Because for both of these cases, the swapchain needs to be the window dimensions, we just use that.
// Set the swapchains window dimensions
let initial_dimensions = if let Some(dimensions) = surface.window().get_inner_size() {
// convert to physical pixels
let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into();
@ -230,9 +212,16 @@ impl<'a> VkProcessor<'a> {
return;
};
// Please take a look at the docs for the meaning of the parameters we didn't mention.
Swapchain::new(self.device.clone(), surface.clone(), capabilities.min_image_count, format,
initial_dimensions, 1, usage, &self.queue, SurfaceTransform::Identity, alpha,
Swapchain::new(self.device.clone(),
surface.clone(),
capabilities.min_image_count,
format,
initial_dimensions,
1, // Layers
usage,
&self.queue,
SurfaceTransform::Identity,
alpha,
PresentMode::Fifo, true, None).unwrap()
};
@ -248,13 +237,11 @@ impl<'a> VkProcessor<'a> {
let mut vertex_shader_path = project_root.clone();
vertex_shader_path.push(PathBuf::from("resources/shaders/"));
vertex_shader_path.push(PathBuf::from(filename.clone()));
vertex_shader_path.push(PathBuf::from(".vertex"));
vertex_shader_path.push(PathBuf::from(filename.clone() + ".vertex"));
let mut fragment_shader_path = project_root.clone();
fragment_shader_path.push(PathBuf::from("resources/shaders/"));
fragment_shader_path.push(PathBuf::from(filename.clone()));
fragment_shader_path.push(PathBuf::from(".fragment"));
fragment_shader_path.push(PathBuf::from(filename.clone() + ".fragment"));
let mut options = CompileOptions::new().ok_or(CompileError::CreateCompiler).unwrap();
options.add_macro_definition("SETTING_POS_X", Some("0"));
@ -325,6 +312,7 @@ impl<'a> VkProcessor<'a> {
}
).unwrap());
self.render_pass = Some(render_pass);
// Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
// program, but much more specific.
@ -339,7 +327,7 @@ impl<'a> VkProcessor<'a> {
.vertex_shader(vert_entry_point, MySpecConstants {
my_integer_constant: 0,
a_boolean: 0,
floating_point: 0.0
floating_point: 0.0,
})
// The content of the vertex buffer describes a list of triangles.
.triangle_list()
@ -349,11 +337,11 @@ impl<'a> VkProcessor<'a> {
.fragment_shader(frag_entry_point, MySpecConstants {
my_integer_constant: 0,
a_boolean: 0,
floating_point: 0.0
floating_point: 0.0,
})
// We have to indicate which subpass of which render pass this pipeline is going to be used
// in. The pipeline will only be usable from this particular subpass.
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
.render_pass(Subpass::from(self.render_pass.clone().unwrap().clone(), 0).unwrap())
// Now that our builder is filled, we call `build()` to obtain an actual pipeline.
.build(self.device.clone())
.unwrap();
@ -363,37 +351,34 @@ impl<'a> VkProcessor<'a> {
}
pub fn create_renderpass(&mut self) {
// On resizes we have to recreate the swapchain
pub fn recreate_swapchain(&mut self, surface: &'a Arc<Surface<Window>>) {
let dimensions = if let Some(dimensions) = surface.window().get_inner_size() {
let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
return;
};
let (new_swapchain, new_images) = match self.swapchain.clone().unwrap().recreate_with_dimension(dimensions) {
Ok(r) => r,
// This error tends to happen when the user is manually resizing the window.
// Simply restarting the loop is the easiest way to fix this issue.
Err(SwapchainCreationError::UnsupportedDimensions) => panic!("Uh oh"),
Err(err) => panic!("{:?}", err)
};
self.swapchain = Some(new_swapchain);
self.images = Some(new_images);
}
// Onto the actual vulkan loop
pub fn run_loop(&mut self, surface : &'a Arc<Surface<Window>>){
// Dynamic viewports allow us to recreate just the viewport when the window is resized
// Otherwise we would have to recreate the whole pipeline.
let mut dynamic_state = DynamicState { line_width: None, viewports: None, scissors: None };
// The render pass we created above only describes the layout of our framebuffers. Before we
// can draw we also need to create the actual framebuffers.
//
// Since we need to draw to multiple images, we are going to create a different framebuffer for
// each image.
let mut framebuffers = window_size_dependent_setup(&self.images.clone().unwrap().clone(), self.render_pass.clone().unwrap().clone(), &mut dynamic_state);
pub fn run_loop(&mut self, surface: &'a Arc<Surface<Window>>) {
// Initialization is finally finished!
let mut framebuffers = window_size_dependent_setup(&self.images.clone().unwrap().clone(),
self.render_pass.clone().unwrap().clone(),
&mut self.dynamic_state);
// In some situations, the swapchain will become invalid by itself. This includes for example
// when the window is resized (as the images of the swapchain will no longer match the
// window's) or, on Android, when the application went to the background and goes back to the
// foreground.
//
// In this situation, acquiring a swapchain image or presenting it will return an error.
// Rendering to an image of that swapchain will not produce any error, but may or may not work.
// To continue rendering, we need to recreate the swapchain by creating a new swapchain.
// Here, we remember that we need to do this for the next loop iteration.
let mut recreate_swapchain = false;
// In the loop below we are going to submit commands to the GPU. Submitting a command produces
@ -403,38 +388,22 @@ impl<'a> VkProcessor<'a> {
// Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid
// that, we store the submission of the previous frame here.
let mut previous_frame_end = Box::new(sync::now(self.device.clone())) as Box<dyn GpuFuture>;
loop {
// loop {
// It is important to call this function from time to time, otherwise resources will keep
// accumulating and you will eventually reach an out of memory error.
// Calling this function polls various fences in order to determine what the GPU has
// already processed, and frees the resources that are no longer needed.
// already processed, and frees the resources that are no longer needed.
previous_frame_end.cleanup_finished();
// Whenever the window resizes we need to recreate everything dependent on the window size.
// In this example that includes the swapchain, the framebuffers and the dynamic state viewport.
if recreate_swapchain {
// Get the new dimensions of the window.
let dimensions = if let Some(dimensions) = surface.window().get_inner_size() {
let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
return;
};
let (new_swapchain, new_images) = match self.swapchain.clone().unwrap().recreate_with_dimension(dimensions) {
Ok(r) => r,
// This error tends to happen when the user is manually resizing the window.
// Simply restarting the loop is the easiest way to fix this issue.
Err(SwapchainCreationError::UnsupportedDimensions) => continue,
Err(err) => panic!("{:?}", err)
};
self.swapchain = Some(new_swapchain);
// Because framebuffers contains an Arc on the old swapchain, we need to
// recreate framebuffers as well.
framebuffers = window_size_dependent_setup(&new_images, self.render_pass.clone().unwrap().clone(), &mut dynamic_state);
self.recreate_swapchain(surface);
framebuffers = window_size_dependent_setup(&self.images.clone().unwrap().clone(),
self.render_pass.clone().unwrap().clone(),
&mut self.dynamic_state);
recreate_swapchain = false;
}
@ -449,7 +418,8 @@ impl<'a> VkProcessor<'a> {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
continue;
//continue;
panic!("Weird thing");
}
Err(err) => panic!("{:?}", err)
};
@ -493,7 +463,7 @@ impl<'a> VkProcessor<'a> {
//
// The last two parameters contain the list of resources to pass to the shaders.
// Since we used an `EmptyPipeline` object, the objects have to be `()`.
.draw(self.pipeline.clone().unwrap().clone(), &dynamic_state, v, (), ())
.draw(self.pipeline.clone().unwrap().clone(), &self.dynamic_state, v, (), ())
.unwrap()
// We leave the render pass by calling `draw_end`. Note that if we had multiple
@ -550,7 +520,7 @@ impl<'a> VkProcessor<'a> {
// }
// });
if done { return; }
}
//}
}
pub fn load_buffers(&mut self, image_filename: String)
{
@ -645,72 +615,72 @@ impl<'a> VkProcessor<'a> {
self.vertex_buffer = Some(vertex_buffer);
}
pub fn run_kernel(&mut self) {
println!("Running Kernel...");
// The command buffer I think pretty much serves to define what runs where for how many times
let command_buffer =
AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(),self.queue.family()).unwrap()
.dispatch([self.xy.0, self.xy.1, 1],
self.compute_pipeline.clone().unwrap().clone(),
self.set.clone().unwrap().clone(), ()).unwrap()
.build().unwrap();
// Create a future for running the command buffer and then just fence it
let future = sync::now(self.device.clone())
.then_execute(self.queue.clone(), command_buffer).unwrap()
.then_signal_fence_and_flush().unwrap();
// I think this is redundant and returns immediately
future.wait(None).unwrap();
println!("Done running kernel");
}
pub fn read_image(&self) -> Vec<u8> {
// The buffer is sync'd so we can just read straight from the handle
let mut data_buffer_content = self.img_buffers.get(0).unwrap().read().unwrap();
println!("Reading output");
let mut image_buffer = Vec::new();
for y in 0..self.xy.1 {
for x in 0..self.xy.0 {
let r = data_buffer_content[((self.xy.0 * y + x) * 4 + 0) as usize] as u8;
let g = data_buffer_content[((self.xy.0 * y + x) * 4 + 1) as usize] as u8;
let b = data_buffer_content[((self.xy.0 * y + x) * 4 + 2) as usize] as u8;
let a = data_buffer_content[((self.xy.0 * y + x) * 4 + 3) as usize] as u8;
image_buffer.push(r);
image_buffer.push(g);
image_buffer.push(b);
image_buffer.push(a);
}
}
image_buffer
}
pub fn save_image(&self) {
println!("Saving output");
let img_data = self.read_image();
let img = ImageBuffer::from_fn(self.xy.0, self.xy.1, |x, y| {
let r = img_data[((self.xy.0 * y + x) * 4 + 0) as usize] as u8;
let g = img_data[((self.xy.0 * y + x) * 4 + 1) as usize] as u8;
let b = img_data[((self.xy.0 * y + x) * 4 + 2) as usize] as u8;
let a = img_data[((self.xy.0 * y + x) * 4 + 3) as usize] as u8;
// pub fn run_kernel(&mut self) {
//
// println!("Running Kernel...");
//
// // The command buffer I think pretty much serves to define what runs where for how many times
// let command_buffer =
// AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(),self.queue.family()).unwrap()
// .dispatch([self.xy.0, self.xy.1, 1],
// self.compute_pipeline.clone().unwrap().clone(),
// self.set.clone().unwrap().clone(), ()).unwrap()
// .build().unwrap();
//
// // Create a future for running the command buffer and then just fence it
// let future = sync::now(self.device.clone())
// .then_execute(self.queue.clone(), command_buffer).unwrap()
// .then_signal_fence_and_flush().unwrap();
//
// // I think this is redundant and returns immediately
// future.wait(None).unwrap();
// println!("Done running kernel");
// }
image::Rgba([r, g, b, a])
});
// pub fn read_image(&self) -> Vec<u8> {
//
// // The buffer is sync'd so we can just read straight from the handle
// let mut data_buffer_content = self.img_buffers.get(0).unwrap().read().unwrap();
//
// println!("Reading output");
//
// let mut image_buffer = Vec::new();
//
// for y in 0..self.xy.1 {
// for x in 0..self.xy.0 {
//
// let r = data_buffer_content[((self.xy.0 * y + x) * 4 + 0) as usize] as u8;
// let g = data_buffer_content[((self.xy.0 * y + x) * 4 + 1) as usize] as u8;
// let b = data_buffer_content[((self.xy.0 * y + x) * 4 + 2) as usize] as u8;
// let a = data_buffer_content[((self.xy.0 * y + x) * 4 + 3) as usize] as u8;
//
// image_buffer.push(r);
// image_buffer.push(g);
// image_buffer.push(b);
// image_buffer.push(a);
// }
// }
//
// image_buffer
// }
img.save(format!("output/{}.png", SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwrap().as_secs()));
}
// pub fn save_image(&self) {
// println!("Saving output");
//
// let img_data = self.read_image();
//
// let img = ImageBuffer::from_fn(self.xy.0, self.xy.1, |x, y| {
//
// let r = img_data[((self.xy.0 * y + x) * 4 + 0) as usize] as u8;
// let g = img_data[((self.xy.0 * y + x) * 4 + 1) as usize] as u8;
// let b = img_data[((self.xy.0 * y + x) * 4 + 2) as usize] as u8;
// let a = img_data[((self.xy.0 * y + x) * 4 + 3) as usize] as u8;
//
// image::Rgba([r, g, b, a])
// });
//
// img.save(format!("output/{}.png", SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwrap().as_secs()));
// }
}

Loading…
Cancel
Save