[−][src]Struct nalgebra::geometry::Similarity
A similarity, i.e., an uniform scaling, followed by a rotation, followed by a translation.
Fields
isometry: Isometry<N, D, R>
The part of this similarity that does not include the scaling factor.
Methods
impl<N: RealField, D: DimName, R> Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
pub fn from_parts(
translation: Translation<N, D>,
rotation: R,
scaling: N
) -> Self
[src]
translation: Translation<N, D>,
rotation: R,
scaling: N
) -> Self
Creates a new similarity from its rotational and translational parts.
pub fn from_isometry(isometry: Isometry<N, D, R>, scaling: N) -> Self
[src]
Creates a new similarity from its rotational and translational parts.
pub fn from_scaling(scaling: N) -> Self
[src]
Creates a new similarity that applies only a scaling factor.
pub fn inverse(&self) -> Self
[src]
Inverts self
.
pub fn inverse_mut(&mut self)
[src]
Inverts self
in-place.
pub fn set_scaling(&mut self, scaling: N)
[src]
The scaling factor of this similarity transformation.
pub fn scaling(&self) -> N
[src]
The scaling factor of this similarity transformation.
pub fn prepend_scaling(&self, scaling: N) -> Self
[src]
The similarity transformation that applies a scaling factor scaling
before self
.
pub fn append_scaling(&self, scaling: N) -> Self
[src]
The similarity transformation that applies a scaling factor scaling
after self
.
pub fn prepend_scaling_mut(&mut self, scaling: N)
[src]
Sets self
to the similarity transformation that applies a scaling factor scaling
before self
.
pub fn append_scaling_mut(&mut self, scaling: N)
[src]
Sets self
to the similarity transformation that applies a scaling factor scaling
after self
.
pub fn append_translation_mut(&mut self, t: &Translation<N, D>)
[src]
Appends to self
the given translation in-place.
pub fn append_rotation_mut(&mut self, r: &R)
[src]
Appends to self
the given rotation in-place.
pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<N, D>)
[src]
Appends in-place to self
a rotation centered at the point p
, i.e., the rotation that
lets p
invariant.
pub fn append_rotation_wrt_center_mut(&mut self, r: &R)
[src]
Appends in-place to self
a rotation centered at the point with coordinates
self.translation
.
pub fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
Transform the given point by this similarity.
This is the same as the multiplication self * pt
.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; let translation = Vector3::new(1.0, 2.0, 3.0); let sim = Similarity3::new(translation, axisangle, 3.0); let transformed_point = sim.transform_point(&Point3::new(4.0, 5.0, 6.0)); assert_relative_eq!(transformed_point, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
pub fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
Transform the given vector by this similarity, ignoring the translational component.
This is the same as the multiplication self * t
.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; let translation = Vector3::new(1.0, 2.0, 3.0); let sim = Similarity3::new(translation, axisangle, 3.0); let transformed_vector = sim.transform_vector(&Vector3::new(4.0, 5.0, 6.0)); assert_relative_eq!(transformed_vector, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
pub fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
Transform the given point by the inverse of this similarity. This may be cheaper than inverting the similarity and then transforming the given point.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; let translation = Vector3::new(1.0, 2.0, 3.0); let sim = Similarity3::new(translation, axisangle, 2.0); let transformed_point = sim.inverse_transform_point(&Point3::new(4.0, 5.0, 6.0)); assert_relative_eq!(transformed_point, Point3::new(-1.5, 1.5, 1.5), epsilon = 1.0e-5);
pub fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
Transform the given vector by the inverse of this similarity, ignoring the translational component. This may be cheaper than inverting the similarity and then transforming the given vector.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; let translation = Vector3::new(1.0, 2.0, 3.0); let sim = Similarity3::new(translation, axisangle, 2.0); let transformed_vector = sim.inverse_transform_vector(&Vector3::new(4.0, 5.0, 6.0)); assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.5, 2.0), epsilon = 1.0e-5);
impl<N: RealField, D: DimName, R> Similarity<N, D, R> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>> where
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
[src]
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
Converts this similarity into its equivalent homogeneous transformation matrix.
impl<N: RealField, D: DimName, R> Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
pub fn identity() -> Self
[src]
Creates a new identity similarity.
Example
let sim = Similarity2::identity(); let pt = Point2::new(1.0, 2.0); assert_eq!(sim * pt, pt); let sim = Similarity3::identity(); let pt = Point3::new(1.0, 2.0, 3.0); assert_eq!(sim * pt, pt);
impl<N: RealField, D: DimName, R> Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
pub fn rotation_wrt_point(r: R, p: Point<N, D>, scaling: N) -> Self
[src]
The similarity that applies the scaling factor scaling
, followed by the rotation r
with
its axis passing through the point p
.
Example
let rot = UnitComplex::new(f32::consts::FRAC_PI_2); let pt = Point2::new(3.0, 2.0); let sim = Similarity2::rotation_wrt_point(rot, pt, 4.0); assert_relative_eq!(sim * Point2::new(1.0, 2.0), Point2::new(-3.0, 3.0), epsilon = 1.0e-6);
impl<N: RealField> Similarity<N, U2, Rotation2<N>>
[src]
pub fn new(translation: Vector2<N>, angle: N, scaling: N) -> Self
[src]
Creates a new similarity from a translation, a rotation, and an uniform scaling factor.
Example
let sim = SimilarityMatrix2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2, 3.0); assert_relative_eq!(sim * Point2::new(2.0, 4.0), Point2::new(-11.0, 8.0), epsilon = 1.0e-6);
impl<N: RealField> Similarity<N, U2, UnitComplex<N>>
[src]
pub fn new(translation: Vector2<N>, angle: N, scaling: N) -> Self
[src]
Creates a new similarity from a translation and a rotation angle.
Example
let sim = Similarity2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2, 3.0); assert_relative_eq!(sim * Point2::new(2.0, 4.0), Point2::new(-11.0, 8.0), epsilon = 1.0e-6);
impl<N: RealField> Similarity<N, U3, Rotation3<N>>
[src]
pub fn new(translation: Vector3<N>, axisangle: Vector3<N>, scaling: N) -> Self
[src]
Creates a new similarity from a translation, rotation axis-angle, and scaling factor.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; let translation = Vector3::new(1.0, 2.0, 3.0); // Point and vector being transformed in the tests. let pt = Point3::new(4.0, 5.0, 6.0); let vec = Vector3::new(4.0, 5.0, 6.0); // Similarity with its rotation part represented as a UnitQuaternion let sim = Similarity3::new(translation, axisangle, 3.0); assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5); assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5); // Similarity with its rotation part represented as a Rotation3 (a 3x3 rotation matrix). let sim = SimilarityMatrix3::new(translation, axisangle, 3.0); assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5); assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
pub fn face_towards(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
Creates an similarity that corresponds to a scaling factor and a local frame of
an observer standing at the point eye
and looking toward target
.
It maps the view direction target - eye
to the positive z
axis and the origin to the
eye
.
Arguments
- eye - The observer position.
- target - The target position.
- up - Vertical direction. The only requirement of this parameter is to not be collinear
to
eye - at
. Non-collinearity is not checked.
Example
let eye = Point3::new(1.0, 2.0, 3.0); let target = Point3::new(2.0, 2.0, 3.0); let up = Vector3::y(); // Similarity with its rotation part represented as a UnitQuaternion let sim = Similarity3::face_towards(&eye, &target, &up, 3.0); assert_eq!(sim * Point3::origin(), eye); assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6); // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix). let sim = SimilarityMatrix3::face_towards(&eye, &target, &up, 3.0); assert_eq!(sim * Point3::origin(), eye); assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);
pub fn new_observer_frames(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
renamed to face_towards
Deprecated: Use [SimilarityMatrix3::face_towards] instead.
pub fn look_at_rh(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
Builds a right-handed look-at view matrix including scaling factor.
This conforms to the common notion of right handed look-at matrix from the computer graphics community.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0); let target = Point3::new(2.0, 2.0, 3.0); let up = Vector3::y(); // Similarity with its rotation part represented as a UnitQuaternion let iso = Similarity3::look_at_rh(&eye, &target, &up, 3.0); assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6); // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix). let iso = SimilarityMatrix3::look_at_rh(&eye, &target, &up, 3.0); assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);
pub fn look_at_lh(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
Builds a left-handed look-at view matrix including a scaling factor.
This conforms to the common notion of left handed look-at matrix from the computer graphics community.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0); let target = Point3::new(2.0, 2.0, 3.0); let up = Vector3::y(); // Similarity with its rotation part represented as a UnitQuaternion let sim = Similarity3::look_at_lh(&eye, &target, &up, 3.0); assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6); // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix). let sim = SimilarityMatrix3::look_at_lh(&eye, &target, &up, 3.0); assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);
impl<N: RealField> Similarity<N, U3, UnitQuaternion<N>>
[src]
pub fn new(translation: Vector3<N>, axisangle: Vector3<N>, scaling: N) -> Self
[src]
Creates a new similarity from a translation, rotation axis-angle, and scaling factor.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; let translation = Vector3::new(1.0, 2.0, 3.0); // Point and vector being transformed in the tests. let pt = Point3::new(4.0, 5.0, 6.0); let vec = Vector3::new(4.0, 5.0, 6.0); // Similarity with its rotation part represented as a UnitQuaternion let sim = Similarity3::new(translation, axisangle, 3.0); assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5); assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5); // Similarity with its rotation part represented as a Rotation3 (a 3x3 rotation matrix). let sim = SimilarityMatrix3::new(translation, axisangle, 3.0); assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5); assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
pub fn face_towards(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
Creates an similarity that corresponds to a scaling factor and a local frame of
an observer standing at the point eye
and looking toward target
.
It maps the view direction target - eye
to the positive z
axis and the origin to the
eye
.
Arguments
- eye - The observer position.
- target - The target position.
- up - Vertical direction. The only requirement of this parameter is to not be collinear
to
eye - at
. Non-collinearity is not checked.
Example
let eye = Point3::new(1.0, 2.0, 3.0); let target = Point3::new(2.0, 2.0, 3.0); let up = Vector3::y(); // Similarity with its rotation part represented as a UnitQuaternion let sim = Similarity3::face_towards(&eye, &target, &up, 3.0); assert_eq!(sim * Point3::origin(), eye); assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6); // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix). let sim = SimilarityMatrix3::face_towards(&eye, &target, &up, 3.0); assert_eq!(sim * Point3::origin(), eye); assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);
pub fn new_observer_frames(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
renamed to face_towards
Deprecated: Use [SimilarityMatrix3::face_towards] instead.
pub fn look_at_rh(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
Builds a right-handed look-at view matrix including scaling factor.
This conforms to the common notion of right handed look-at matrix from the computer graphics community.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0); let target = Point3::new(2.0, 2.0, 3.0); let up = Vector3::y(); // Similarity with its rotation part represented as a UnitQuaternion let iso = Similarity3::look_at_rh(&eye, &target, &up, 3.0); assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6); // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix). let iso = SimilarityMatrix3::look_at_rh(&eye, &target, &up, 3.0); assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);
pub fn look_at_lh(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
Builds a left-handed look-at view matrix including a scaling factor.
This conforms to the common notion of left handed look-at matrix from the computer graphics community.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0); let target = Point3::new(2.0, 2.0, 3.0); let up = Vector3::y(); // Similarity with its rotation part represented as a UnitQuaternion let sim = Similarity3::look_at_lh(&eye, &target, &up, 3.0); assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6); // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix). let sim = SimilarityMatrix3::look_at_lh(&eye, &target, &up, 3.0); assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);
Trait Implementations
impl<N: RealField, D: DimName, R> Eq for Similarity<N, D, R> where
R: Rotation<Point<N, D>> + Eq,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>> + Eq,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R: Rotation<Point<N, D>> + Clone> Clone for Similarity<N, D, R> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn clone(&self) -> Self
[src]
fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl<N: RealField, D: DimName, R> PartialEq<Similarity<N, D, R>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>> + PartialEq,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>> + PartialEq,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R> From<Similarity<N, D, R>> for MatrixN<N, DimNameSum<D, U1>> where
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
[src]
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn from(sim: Similarity<N, D, R>) -> Self
[src]
impl<N: RealField, D: DimName + Copy, R: Rotation<Point<N, D>> + Copy> Copy for Similarity<N, D, R> where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Copy,
[src]
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Copy,
impl<N: RealField + Hash, D: DimName + Hash, R: Hash> Hash for Similarity<N, D, R> where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Hash,
[src]
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Hash,
fn hash<H: Hasher>(&self, state: &mut H)
[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
H: Hasher,
impl<N: RealField> Mul<Similarity<N, U2, Unit<Complex<N>>>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Similarity<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, U2, UnitComplex<N>>) -> Self::Output
[src]
impl<'a, N: RealField> Mul<Similarity<N, U2, Unit<Complex<N>>>> for &'a UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Similarity<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, U2, UnitComplex<N>>) -> Self::Output
[src]
impl<'b, N: RealField> Mul<&'b Similarity<N, U2, Unit<Complex<N>>>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Similarity<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, U2, UnitComplex<N>>) -> Self::Output
[src]
impl<'a, 'b, N: RealField> Mul<&'b Similarity<N, U2, Unit<Complex<N>>>> for &'a UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Similarity<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, U2, UnitComplex<N>>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Similarity<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Similarity<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Similarity<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Similarity<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<R> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: R) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<R> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: R) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b R> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b R) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b R> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b R) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Isometry<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Isometry<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Similarity<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Similarity<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Similarity<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Similarity<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Point<N, D>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Point<N, D>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Point<N, D>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Point<N, D>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = VectorN<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: VectorN<N, D>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = VectorN<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: VectorN<N, D>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = VectorN<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b VectorN<N, D>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = VectorN<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b VectorN<N, D>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Translation<N, D>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Translation<N, D>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Translation<N, D>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Translation<N, D>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Translation<N, D>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Translation<N, D>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Translation<N, D>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Translation<N, D>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Similarity<N, D, R>> for Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Similarity<N, D, R>> for &'a Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Similarity<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Similarity<N, D, R>> for Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Similarity<N, D, R>> for &'a Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName> Mul<Similarity<N, D, Rotation<N, D>>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName> Mul<Similarity<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName> Mul<&'b Similarity<N, D, Rotation<N, D>>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName> Mul<&'b Similarity<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<N: RealField> Mul<Similarity<N, U3, Unit<Quaternion<N>>>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: Similarity<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<'a, N: RealField> Mul<Similarity<N, U3, Unit<Quaternion<N>>>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: Similarity<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<'b, N: RealField> Mul<&'b Similarity<N, U3, Unit<Quaternion<N>>>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Similarity<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<'a, 'b, N: RealField> Mul<&'b Similarity<N, U3, Unit<Quaternion<N>>>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Similarity<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Similarity<N, D, R>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Similarity<N, D, R>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Similarity<N, D, R>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Similarity<N, D, R>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Transform<N, D, C>> for Similarity<N, D, R> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Transform<N, D, C>) -> Self::Output
[src]
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Transform<N, D, C>> for &'a Similarity<N, D, R> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Transform<N, D, C>) -> Self::Output
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Transform<N, D, C>> for Similarity<N, D, R> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Transform<N, D, C>) -> Self::Output
[src]
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Transform<N, D, C>> for &'a Similarity<N, D, R> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Transform<N, D, C>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Div<Similarity<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Div<Similarity<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Div<&'b Similarity<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Div<&'b Similarity<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Div<R> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: R) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Div<R> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: R) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Div<&'b R> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b R) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Div<&'b R> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b R) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Div<Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Div<Isometry<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Div<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Div<&'b Isometry<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Div<Similarity<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Div<Similarity<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Div<&'b Similarity<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Div<&'b Similarity<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName> Div<Similarity<N, D, Rotation<N, D>>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName> Div<Similarity<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName> Div<&'b Similarity<N, D, Rotation<N, D>>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: &'b Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName> Div<&'b Similarity<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: &'b Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<N: RealField> Div<Similarity<N, U3, Unit<Quaternion<N>>>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
fn div(self, right: Similarity<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<'a, N: RealField> Div<Similarity<N, U3, Unit<Quaternion<N>>>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
fn div(self, right: Similarity<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<'b, N: RealField> Div<&'b Similarity<N, U3, Unit<Quaternion<N>>>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
fn div(self, right: &'b Similarity<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<'a, 'b, N: RealField> Div<&'b Similarity<N, U3, Unit<Quaternion<N>>>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
fn div(self, right: &'b Similarity<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> MulAssign<Translation<N, D>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: Translation<N, D>)
[src]
impl<'b, N: RealField, D: DimName, R> MulAssign<&'b Translation<N, D>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: &'b Translation<N, D>)
[src]
impl<N: RealField, D: DimName, R> MulAssign<Similarity<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: Similarity<N, D, R>)
[src]
impl<'b, N: RealField, D: DimName, R> MulAssign<&'b Similarity<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: &'b Similarity<N, D, R>)
[src]
impl<N: RealField, D: DimName, R> MulAssign<Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: Isometry<N, D, R>)
[src]
impl<'b, N: RealField, D: DimName, R> MulAssign<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: &'b Isometry<N, D, R>)
[src]
impl<N: RealField, D: DimName, R> MulAssign<R> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: R)
[src]
impl<'b, N: RealField, D: DimName, R> MulAssign<&'b R> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: &'b R)
[src]
impl<N, D: DimNameAdd<U1>, C: TCategory, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> MulAssign<Similarity<N, D, R>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn mul_assign(&mut self, rhs: Similarity<N, D, R>)
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategory, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> MulAssign<&'b Similarity<N, D, R>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn mul_assign(&mut self, rhs: &'b Similarity<N, D, R>)
[src]
impl<N: RealField, D: DimName, R> DivAssign<Similarity<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: Similarity<N, D, R>)
[src]
impl<'b, N: RealField, D: DimName, R> DivAssign<&'b Similarity<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: &'b Similarity<N, D, R>)
[src]
impl<N: RealField, D: DimName, R> DivAssign<Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: Isometry<N, D, R>)
[src]
impl<'b, N: RealField, D: DimName, R> DivAssign<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: &'b Isometry<N, D, R>)
[src]
impl<N: RealField, D: DimName, R> DivAssign<R> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: R)
[src]
impl<'b, N: RealField, D: DimName, R> DivAssign<&'b R> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: &'b R)
[src]
impl<N: Debug + RealField, D: Debug + DimName, R: Debug> Debug for Similarity<N, D, R> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N, D: DimName, R> Display for Similarity<N, D, R> where
N: RealField + Display,
R: Rotation<Point<N, D>> + Display,
DefaultAllocator: Allocator<N, D> + Allocator<usize, D>,
[src]
N: RealField + Display,
R: Rotation<Point<N, D>> + Display,
DefaultAllocator: Allocator<N, D> + Allocator<usize, D>,
impl<N: RealField, D: DimName, R> AbsDiffEq<Similarity<N, D, R>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>> + AbsDiffEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
[src]
R: Rotation<Point<N, D>> + AbsDiffEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
type Epsilon = N::Epsilon
Used for specifying relative comparisons.
fn default_epsilon() -> Self::Epsilon
[src]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
[src]
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
[src]
impl<N: RealField, D: DimName, R> RelativeEq<Similarity<N, D, R>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>> + RelativeEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
[src]
R: Rotation<Point<N, D>> + RelativeEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
fn default_max_relative() -> Self::Epsilon
[src]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
[src]
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
[src]
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
impl<N: RealField, D: DimName, R> UlpsEq<Similarity<N, D, R>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>> + UlpsEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
[src]
R: Rotation<Point<N, D>> + UlpsEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
fn default_max_ulps() -> u32
[src]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool
[src]
fn ulps_ne(&self, other: &Rhs, epsilon: Self::Epsilon, max_ulps: u32) -> bool
[src]
impl<N: RealField, D: DimName, R> One for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn one() -> Self
[src]
Creates a new identity similarity.
fn set_one(&mut self)
[src]
fn is_one(&self) -> bool where
Self: PartialEq<Self>,
[src]
Self: PartialEq<Self>,
impl<N: RealField, D: DimName, R> Distribution<Similarity<N, D, R>> for Standard where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
Standard: Distribution<N> + Distribution<R>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
Standard: Distribution<N> + Distribution<R>,
fn sample<'a, G: Rng + ?Sized>(&self, rng: &mut G) -> Similarity<N, D, R>
[src]
fn sample_iter<R>(&'a self, rng: &'a mut R) -> DistIter<'a, Self, R, T> where
R: Rng,
[src]
R: Rng,
impl<N: RealField, D: DimName, R> AbstractMagma<Multiplicative> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R> AbstractQuasigroup<Multiplicative> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
Self: RelativeEq<Self>,
[src]
Self: RelativeEq<Self>,
fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl<N: RealField, D: DimName, R> AbstractSemigroup<Multiplicative> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq<Self>,
[src]
Self: RelativeEq<Self>,
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl<N: RealField, D: DimName, R> AbstractLoop<Multiplicative> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R> AbstractMonoid<Multiplicative> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq<Self>,
[src]
Self: RelativeEq<Self>,
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl<N: RealField, D: DimName, R> AbstractGroup<Multiplicative> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R> Identity<Multiplicative> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R> TwoSidedInverse<Multiplicative> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn two_sided_inverse(&self) -> Self
[src]
fn two_sided_inverse_mut(&mut self)
[src]
impl<N1, N2, D: DimName, R> SubsetOf<Similarity<N2, D, R>> for Rotation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point<N2, D>> + SupersetOf<Self>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point<N2, D>> + SupersetOf<Self>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D>,
fn to_superset(&self) -> Similarity<N2, D, R>
[src]
fn is_in_subset(sim: &Similarity<N2, D, R>) -> bool
[src]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R>) -> Self
[src]
fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, R> SubsetOf<Similarity<N2, U3, R>> for UnitQuaternion<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point3<N2>> + SupersetOf<Self>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point3<N2>> + SupersetOf<Self>,
fn to_superset(&self) -> Similarity<N2, U3, R>
[src]
fn is_in_subset(sim: &Similarity<N2, U3, R>) -> bool
[src]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, U3, R>) -> Self
[src]
fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, R> SubsetOf<Similarity<N2, U2, R>> for UnitComplex<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point2<N2>> + SupersetOf<Self>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point2<N2>> + SupersetOf<Self>,
fn to_superset(&self) -> Similarity<N2, U2, R>
[src]
fn is_in_subset(sim: &Similarity<N2, U2, R>) -> bool
[src]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, U2, R>) -> Self
[src]
fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, D: DimName, R> SubsetOf<Similarity<N2, D, R>> for Translation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
fn to_superset(&self) -> Similarity<N2, D, R>
[src]
fn is_in_subset(sim: &Similarity<N2, D, R>) -> bool
[src]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R>) -> Self
[src]
fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, D: DimName, R1, R2> SubsetOf<Similarity<N2, D, R2>> for Isometry<N1, D, R1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
fn to_superset(&self) -> Similarity<N2, D, R2>
[src]
fn is_in_subset(sim: &Similarity<N2, D, R2>) -> bool
[src]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R2>) -> Self
[src]
fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, D: DimName, R1, R2> SubsetOf<Similarity<N2, D, R2>> for Similarity<N1, D, R1> where
N1: RealField + SubsetOf<N2>,
N2: RealField + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
[src]
N1: RealField + SubsetOf<N2>,
N2: RealField + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
fn to_superset(&self) -> Similarity<N2, D, R2>
[src]
fn is_in_subset(sim: &Similarity<N2, D, R2>) -> bool
[src]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R2>) -> Self
[src]
fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, D, R, C> SubsetOf<Transform<N2, D, C>> for Similarity<N1, D, R> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>,
fn to_superset(&self) -> Transform<N2, D, C>
[src]
fn is_in_subset(t: &Transform<N2, D, C>) -> bool
[src]
unsafe fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self
[src]
fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, D, R> SubsetOf<Matrix<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>> for Similarity<N1, D, R> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>,
fn to_superset(&self) -> MatrixN<N2, DimNameSum<D, U1>>
[src]
fn is_in_subset(m: &MatrixN<N2, DimNameSum<D, U1>>) -> bool
[src]
unsafe fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self
[src]
fn from_superset(element: &T) -> Option<Self>
[src]
impl<N: RealField, D: DimName, R> ProjectiveTransformation<Point<N, D>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
impl<N: RealField, D: DimName, R> Transformation<Point<N, D>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
impl<N: RealField, D: DimName, R> Similarity<Point<N, D>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Scaling = N
The type of the pure (uniform) scaling part of this similarity transformation.
fn translation(&self) -> Translation<N, D>
[src]
fn rotation(&self) -> R
[src]
fn scaling(&self) -> N
[src]
fn translate_point(&self, pt: &E) -> E
[src]
fn rotate_point(&self, pt: &E) -> E
[src]
fn scale_point(&self, pt: &E) -> E
[src]
fn rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
fn scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
fn inverse_translate_point(&self, pt: &E) -> E
[src]
fn inverse_rotate_point(&self, pt: &E) -> E
[src]
fn inverse_scale_point(&self, pt: &E) -> E
[src]
fn inverse_rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
fn inverse_scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
impl<N: RealField, D: DimName, R> AffineTransformation<Point<N, D>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type NonUniformScaling = N
Type of the non-uniform scaling to be applied.
type Rotation = R
Type of the first rotation to be applied.
type Translation = Translation<N, D>
The type of the pure translation part of this affine transformation.
fn decompose(&self) -> (Translation<N, D>, R, N, R)
[src]
fn append_translation(&self, t: &Self::Translation) -> Self
[src]
fn prepend_translation(&self, t: &Self::Translation) -> Self
[src]
fn append_rotation(&self, r: &Self::Rotation) -> Self
[src]
fn prepend_rotation(&self, r: &Self::Rotation) -> Self
[src]
fn append_scaling(&self, s: &Self::NonUniformScaling) -> Self
[src]
fn prepend_scaling(&self, s: &Self::NonUniformScaling) -> Self
[src]
fn append_rotation_wrt_point(
&self,
r: &Self::Rotation,
p: &Point<N, D>
) -> Option<Self>
[src]
&self,
r: &Self::Rotation,
p: &Point<N, D>
) -> Option<Self>
Auto Trait Implementations
impl<N, D, R> !Send for Similarity<N, D, R>
impl<N, D, R> !Unpin for Similarity<N, D, R>
impl<N, D, R> !Sync for Similarity<N, D, R>
impl<N, D, R> !UnwindSafe for Similarity<N, D, R>
impl<N, D, R> !RefUnwindSafe for Similarity<N, D, R>
Blanket Implementations
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T
[src]
fn clone_into(&self, target: &mut T)
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> From<T> for T
[src]
impl<T> ToString for T where
T: Display + ?Sized,
[src]
T: Display + ?Sized,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Same<T> for T
[src]
type Output = T
Should always be Self
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]
SS: SubsetOf<SP>,
fn to_subset(&self) -> Option<SS>
[src]
fn is_in_subset(&self) -> bool
[src]
unsafe fn to_subset_unchecked(&self) -> SS
[src]
fn from_subset(element: &SS) -> SP
[src]
impl<T, Right> ClosedMul<Right> for T where
T: Mul<Right, Output = T> + MulAssign<Right>,
[src]
T: Mul<Right, Output = T> + MulAssign<Right>,
impl<T, Right> ClosedDiv<Right> for T where
T: Div<Right, Output = T> + DivAssign<Right>,
[src]
T: Div<Right, Output = T> + DivAssign<Right>,
impl<T> MultiplicativeMagma for T where
T: AbstractMagma<Multiplicative>,
[src]
T: AbstractMagma<Multiplicative>,
impl<T> MultiplicativeQuasigroup for T where
T: AbstractQuasigroup<Multiplicative> + ClosedDiv<T> + MultiplicativeMagma,
[src]
T: AbstractQuasigroup<Multiplicative> + ClosedDiv<T> + MultiplicativeMagma,
impl<T> MultiplicativeLoop for T where
T: AbstractLoop<Multiplicative> + MultiplicativeQuasigroup + One,
[src]
T: AbstractLoop<Multiplicative> + MultiplicativeQuasigroup + One,
impl<T> MultiplicativeSemigroup for T where
T: AbstractSemigroup<Multiplicative> + ClosedMul<T> + MultiplicativeMagma,
[src]
T: AbstractSemigroup<Multiplicative> + ClosedMul<T> + MultiplicativeMagma,
impl<T> MultiplicativeMonoid for T where
T: AbstractMonoid<Multiplicative> + MultiplicativeSemigroup + One,
[src]
T: AbstractMonoid<Multiplicative> + MultiplicativeSemigroup + One,
impl<T> MultiplicativeGroup for T where
T: AbstractGroup<Multiplicative> + MultiplicativeLoop + MultiplicativeMonoid,
[src]
T: AbstractGroup<Multiplicative> + MultiplicativeLoop + MultiplicativeMonoid,
impl<R, E> ProjectiveTransformation<E> for R where
E: EuclideanSpace<RealField = R>,
R: RealField,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
[src]
E: EuclideanSpace<RealField = R>,
R: RealField,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
fn inverse_transform_point(&self, pt: &E) -> E
[src]
fn inverse_transform_vector(
&self,
v: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
v: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
impl<R, E> Transformation<E> for R where
E: EuclideanSpace<RealField = R>,
R: RealField,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
[src]
E: EuclideanSpace<RealField = R>,
R: RealField,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
fn transform_point(&self, pt: &E) -> E
[src]
fn transform_vector(
&self,
v: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
v: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
impl<R, E> Similarity<E> for R where
E: EuclideanSpace<RealField = R>,
R: RealField + SubsetOf<R>,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
[src]
E: EuclideanSpace<RealField = R>,
R: RealField + SubsetOf<R>,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
type Scaling = R
The type of the pure (uniform) scaling part of this similarity transformation.
fn translation(&self) -> <R as AffineTransformation<E>>::Translation
[src]
fn rotation(&self) -> <R as AffineTransformation<E>>::Rotation
[src]
fn scaling(&self) -> <R as Similarity<E>>::Scaling
[src]
fn translate_point(&self, pt: &E) -> E
[src]
fn rotate_point(&self, pt: &E) -> E
[src]
fn scale_point(&self, pt: &E) -> E
[src]
fn rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
fn scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
fn inverse_translate_point(&self, pt: &E) -> E
[src]
fn inverse_rotate_point(&self, pt: &E) -> E
[src]
fn inverse_scale_point(&self, pt: &E) -> E
[src]
fn inverse_rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
fn inverse_scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
impl<R, E> AffineTransformation<E> for R where
E: EuclideanSpace<RealField = R>,
R: RealField,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
[src]
E: EuclideanSpace<RealField = R>,
R: RealField,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
type Rotation = Id<Multiplicative>
Type of the first rotation to be applied.
type NonUniformScaling = R
Type of the non-uniform scaling to be applied.
type Translation = Id<Multiplicative>
The type of the pure translation part of this affine transformation.
fn decompose(
&self
) -> (Id<Multiplicative>, Id<Multiplicative>, R, Id<Multiplicative>)
[src]
&self
) -> (Id<Multiplicative>, Id<Multiplicative>, R, Id<Multiplicative>)
fn append_translation(&self, &<R as AffineTransformation<E>>::Translation) -> R
[src]
fn prepend_translation(&self, &<R as AffineTransformation<E>>::Translation) -> R
[src]
fn append_rotation(&self, &<R as AffineTransformation<E>>::Rotation) -> R
[src]
fn prepend_rotation(&self, &<R as AffineTransformation<E>>::Rotation) -> R
[src]
fn append_scaling(
&self,
s: &<R as AffineTransformation<E>>::NonUniformScaling
) -> R
[src]
&self,
s: &<R as AffineTransformation<E>>::NonUniformScaling
) -> R
fn prepend_scaling(
&self,
s: &<R as AffineTransformation<E>>::NonUniformScaling
) -> R
[src]
&self,
s: &<R as AffineTransformation<E>>::NonUniformScaling
) -> R