[−][src]Struct cgmath::Basis2
A two-dimensional rotation matrix.
The matrix is guaranteed to be orthogonal, so some operations can be
implemented more efficiently than the implementations for math::Matrix2
. To
enforce orthogonality at the type level the operations have been restricted
to a subset of those implemented on Matrix2
.
Example
Suppose we want to rotate a vector that lies in the x-y plane by some angle. We can accomplish this quite easily with a two-dimensional rotation matrix:
use cgmath::Rad; use cgmath::Vector2; use cgmath::{Matrix, Matrix2}; use cgmath::{Rotation, Rotation2, Basis2}; use cgmath::UlpsEq; use std::f64; // For simplicity, we will rotate the unit x vector to the unit y vector -- // so the angle is 90 degrees, or π/2. let unit_x: Vector2<f64> = Vector2::unit_x(); let rot: Basis2<f64> = Rotation2::from_angle(Rad(0.5f64 * f64::consts::PI)); // Rotate the vector using the two-dimensional rotation matrix: let unit_y = rot.rotate_vector(unit_x); // Since sin(π/2) may not be exactly zero due to rounding errors, we can // use approx's assert_ulps_eq!() feature to show that it is close enough. // assert_ulps_eq!(&unit_y, &Vector2::unit_y()); // TODO: Figure out how to use this // This is exactly equivalent to using the raw matrix itself: let unit_y2: Matrix2<_> = rot.into(); let unit_y2 = unit_y2 * unit_x; assert_eq!(unit_y2, unit_y); // Note that we can also concatenate rotations: let rot_half: Basis2<f64> = Rotation2::from_angle(Rad(0.25f64 * f64::consts::PI)); let unit_y3 = (rot_half * rot_half).rotate_vector(unit_x); // assert_ulps_eq!(&unit_y3, &unit_y2); // TODO: Figure out how to use this
Trait Implementations
impl<S: BaseFloat> Rotation<Point2<S>> for Basis2<S>
[src]
fn look_at(dir: Vector2<S>, up: Vector2<S>) -> Basis2<S>
[src]
fn between_vectors(a: Vector2<S>, b: Vector2<S>) -> Basis2<S>
[src]
fn rotate_vector(&self, vec: Vector2<S>) -> Vector2<S>
[src]
fn invert(&self) -> Basis2<S>
[src]
fn rotate_point(&self, point: P) -> P
[src]
impl<S: BaseFloat> Rotation2<S> for Basis2<S>
[src]
fn from_angle<A: Into<Rad<S>>>(theta: A) -> Basis2<S>
[src]
impl<S: Clone> Clone for Basis2<S>
[src]
impl<S: BaseFloat> AsRef<Matrix2<S>> for Basis2<S>
[src]
impl<S: PartialEq> PartialEq<Basis2<S>> for Basis2<S>
[src]
impl<S: BaseFloat> From<Basis2<S>> for Matrix2<S>
[src]
impl<S: Copy> Copy for Basis2<S>
[src]
impl<S: BaseFloat> Mul<Basis2<S>> for Basis2<S>
[src]
type Output = Basis2<S>
The resulting type after applying the *
operator.
fn mul(self, other: Basis2<S>) -> Basis2<S>
[src]
impl<'a, S: BaseFloat> Mul<&'a Basis2<S>> for Basis2<S>
[src]
type Output = Basis2<S>
The resulting type after applying the *
operator.
fn mul(self, other: &'a Basis2<S>) -> Basis2<S>
[src]
impl<'a, S: BaseFloat> Mul<Basis2<S>> for &'a Basis2<S>
[src]
type Output = Basis2<S>
The resulting type after applying the *
operator.
fn mul(self, other: Basis2<S>) -> Basis2<S>
[src]
impl<'a, 'b, S: BaseFloat> Mul<&'a Basis2<S>> for &'b Basis2<S>
[src]
type Output = Basis2<S>
The resulting type after applying the *
operator.
fn mul(self, other: &'a Basis2<S>) -> Basis2<S>
[src]
impl<S: Debug> Debug for Basis2<S>
[src]
impl<S: BaseFloat> Product<Basis2<S>> for Basis2<S>
[src]
impl<'a, S: 'a + BaseFloat> Product<&'a Basis2<S>> for Basis2<S>
[src]
impl<S: BaseFloat> AbsDiffEq<Basis2<S>> for Basis2<S>
[src]
type Epsilon = S::Epsilon
Used for specifying relative comparisons.
fn default_epsilon() -> S::Epsilon
[src]
fn abs_diff_eq(&self, other: &Self, epsilon: S::Epsilon) -> bool
[src]
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
[src]
impl<S: BaseFloat> RelativeEq<Basis2<S>> for Basis2<S>
[src]
fn default_max_relative() -> S::Epsilon
[src]
fn relative_eq(
&self,
other: &Self,
epsilon: S::Epsilon,
max_relative: S::Epsilon
) -> bool
[src]
&self,
other: &Self,
epsilon: S::Epsilon,
max_relative: S::Epsilon
) -> bool
fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
[src]
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
impl<S: BaseFloat> UlpsEq<Basis2<S>> for Basis2<S>
[src]
fn default_max_ulps() -> u32
[src]
fn ulps_eq(&self, other: &Self, epsilon: S::Epsilon, max_ulps: u32) -> bool
[src]
fn ulps_ne(&self, other: &Rhs, epsilon: Self::Epsilon, max_ulps: u32) -> bool
[src]
impl<S: BaseFloat> One for Basis2<S>
[src]
Auto Trait Implementations
impl<S> Send for Basis2<S> where
S: Send,
S: Send,
impl<S> Unpin for Basis2<S> where
S: Unpin,
S: Unpin,
impl<S> Sync for Basis2<S> where
S: Sync,
S: Sync,
impl<S> UnwindSafe for Basis2<S> where
S: UnwindSafe,
S: UnwindSafe,
impl<S> RefUnwindSafe for Basis2<S> where
S: RefUnwindSafe,
S: RefUnwindSafe,
Blanket Implementations
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T
[src]
fn clone_into(&self, target: &mut T)
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> From<T> for T
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,