[][src]Struct cgmath::Basis2

pub struct Basis2<S> { /* fields omitted */ }

A two-dimensional rotation matrix.

The matrix is guaranteed to be orthogonal, so some operations can be implemented more efficiently than the implementations for math::Matrix2. To enforce orthogonality at the type level the operations have been restricted to a subset of those implemented on Matrix2.

Example

Suppose we want to rotate a vector that lies in the x-y plane by some angle. We can accomplish this quite easily with a two-dimensional rotation matrix:

use cgmath::Rad;
use cgmath::Vector2;
use cgmath::{Matrix, Matrix2};
use cgmath::{Rotation, Rotation2, Basis2};
use cgmath::UlpsEq;
use std::f64;

// For simplicity, we will rotate the unit x vector to the unit y vector --
// so the angle is 90 degrees, or π/2.
let unit_x: Vector2<f64> = Vector2::unit_x();
let rot: Basis2<f64> = Rotation2::from_angle(Rad(0.5f64 * f64::consts::PI));

// Rotate the vector using the two-dimensional rotation matrix:
let unit_y = rot.rotate_vector(unit_x);

// Since sin(π/2) may not be exactly zero due to rounding errors, we can
// use approx's assert_ulps_eq!() feature to show that it is close enough.
// assert_ulps_eq!(&unit_y, &Vector2::unit_y()); // TODO: Figure out how to use this

// This is exactly equivalent to using the raw matrix itself:
let unit_y2: Matrix2<_> = rot.into();
let unit_y2 = unit_y2 * unit_x;
assert_eq!(unit_y2, unit_y);

// Note that we can also concatenate rotations:
let rot_half: Basis2<f64> = Rotation2::from_angle(Rad(0.25f64 * f64::consts::PI));
let unit_y3 = (rot_half * rot_half).rotate_vector(unit_x);
// assert_ulps_eq!(&unit_y3, &unit_y2); // TODO: Figure out how to use this

Trait Implementations

impl<S: BaseFloat> Rotation<Point2<S>> for Basis2<S>[src]

impl<S: BaseFloat> Rotation2<S> for Basis2<S>[src]

impl<S: Clone> Clone for Basis2<S>[src]

impl<S: BaseFloat> AsRef<Matrix2<S>> for Basis2<S>[src]

impl<S: PartialEq> PartialEq<Basis2<S>> for Basis2<S>[src]

impl<S: BaseFloat> From<Basis2<S>> for Matrix2<S>[src]

impl<S: Copy> Copy for Basis2<S>[src]

impl<S: BaseFloat> Mul<Basis2<S>> for Basis2<S>[src]

type Output = Basis2<S>

The resulting type after applying the * operator.

impl<'a, S: BaseFloat> Mul<&'a Basis2<S>> for Basis2<S>[src]

type Output = Basis2<S>

The resulting type after applying the * operator.

impl<'a, S: BaseFloat> Mul<Basis2<S>> for &'a Basis2<S>[src]

type Output = Basis2<S>

The resulting type after applying the * operator.

impl<'a, 'b, S: BaseFloat> Mul<&'a Basis2<S>> for &'b Basis2<S>[src]

type Output = Basis2<S>

The resulting type after applying the * operator.

impl<S: Debug> Debug for Basis2<S>[src]

impl<S: BaseFloat> Product<Basis2<S>> for Basis2<S>[src]

impl<'a, S: 'a + BaseFloat> Product<&'a Basis2<S>> for Basis2<S>[src]

impl<S: BaseFloat> AbsDiffEq<Basis2<S>> for Basis2<S>[src]

type Epsilon = S::Epsilon

Used for specifying relative comparisons.

impl<S: BaseFloat> RelativeEq<Basis2<S>> for Basis2<S>[src]

impl<S: BaseFloat> UlpsEq<Basis2<S>> for Basis2<S>[src]

impl<S: BaseFloat> One for Basis2<S>[src]

Auto Trait Implementations

impl<S> Send for Basis2<S> where
    S: Send

impl<S> Unpin for Basis2<S> where
    S: Unpin

impl<S> Sync for Basis2<S> where
    S: Sync

impl<S> UnwindSafe for Basis2<S> where
    S: UnwindSafe

impl<S> RefUnwindSafe for Basis2<S> where
    S: RefUnwindSafe

Blanket Implementations

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> From<T> for T[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]