[−][src]Struct nalgebra::geometry::Orthographic3
A 3D orthographic projection stored as an homogeneous 4x4 matrix.
Methods
impl<N: RealField> Orthographic3<N>
[src]
pub fn new(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> Self
[src]
Creates a new orthographic projection matrix.
This follows the OpenGL convention, so this will flip the z
axis.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); // Check this projection actually transforms the view cuboid into the double-unit cube. // See https://www.nalgebra.org/projections/#orthographic-projection for more details. let p1 = Point3::new(1.0, 2.0, -0.1); let p2 = Point3::new(1.0, 2.0, -1000.0); let p3 = Point3::new(1.0, 20.0, -0.1); let p4 = Point3::new(1.0, 20.0, -1000.0); let p5 = Point3::new(10.0, 2.0, -0.1); let p6 = Point3::new(10.0, 2.0, -1000.0); let p7 = Point3::new(10.0, 20.0, -0.1); let p8 = Point3::new(10.0, 20.0, -1000.0); assert_relative_eq!(proj.project_point(&p1), Point3::new(-1.0, -1.0, -1.0)); assert_relative_eq!(proj.project_point(&p2), Point3::new(-1.0, -1.0, 1.0)); assert_relative_eq!(proj.project_point(&p3), Point3::new(-1.0, 1.0, -1.0)); assert_relative_eq!(proj.project_point(&p4), Point3::new(-1.0, 1.0, 1.0)); assert_relative_eq!(proj.project_point(&p5), Point3::new( 1.0, -1.0, -1.0)); assert_relative_eq!(proj.project_point(&p6), Point3::new( 1.0, -1.0, 1.0)); assert_relative_eq!(proj.project_point(&p7), Point3::new( 1.0, 1.0, -1.0)); assert_relative_eq!(proj.project_point(&p8), Point3::new( 1.0, 1.0, 1.0)); // This also works with flipped axis. In other words, we allow that // `left > right`, `bottom > top`, and/or `znear > zfar`. let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.project_point(&p1), Point3::new( 1.0, 1.0, 1.0)); assert_relative_eq!(proj.project_point(&p2), Point3::new( 1.0, 1.0, -1.0)); assert_relative_eq!(proj.project_point(&p3), Point3::new( 1.0, -1.0, 1.0)); assert_relative_eq!(proj.project_point(&p4), Point3::new( 1.0, -1.0, -1.0)); assert_relative_eq!(proj.project_point(&p5), Point3::new(-1.0, 1.0, 1.0)); assert_relative_eq!(proj.project_point(&p6), Point3::new(-1.0, 1.0, -1.0)); assert_relative_eq!(proj.project_point(&p7), Point3::new(-1.0, -1.0, 1.0)); assert_relative_eq!(proj.project_point(&p8), Point3::new(-1.0, -1.0, -1.0));
pub fn from_matrix_unchecked(matrix: Matrix4<N>) -> Self
[src]
Wraps the given matrix to interpret it as a 3D orthographic matrix.
It is not checked whether or not the given matrix actually represents an orthographic projection.
Example
let mat = Matrix4::new( 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0, 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0, 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9, 0.0, 0.0, 0.0, 1.0 ); let proj = Orthographic3::from_matrix_unchecked(mat); assert_eq!(proj, Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0));
pub fn from_fov(aspect: N, vfov: N, znear: N, zfar: N) -> Self
[src]
Creates a new orthographic projection matrix from an aspect ratio and the vertical field of view.
pub fn inverse(&self) -> Matrix4<N>
[src]
Retrieves the inverse of the underlying homogeneous matrix.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let inv = proj.inverse(); assert_relative_eq!(inv * proj.as_matrix(), Matrix4::identity()); assert_relative_eq!(proj.as_matrix() * inv, Matrix4::identity()); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); let inv = proj.inverse(); assert_relative_eq!(inv * proj.as_matrix(), Matrix4::identity()); assert_relative_eq!(proj.as_matrix() * inv, Matrix4::identity());
pub fn to_homogeneous(&self) -> Matrix4<N>
[src]
Computes the corresponding homogeneous matrix.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let expected = Matrix4::new( 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0, 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0, 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9, 0.0, 0.0, 0.0, 1.0 ); assert_eq!(proj.to_homogeneous(), expected);
pub fn as_matrix(&self) -> &Matrix4<N>
[src]
A reference to the underlying homogeneous transformation matrix.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let expected = Matrix4::new( 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0, 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0, 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9, 0.0, 0.0, 0.0, 1.0 ); assert_eq!(*proj.as_matrix(), expected);
pub fn as_projective(&self) -> &Projective3<N>
[src]
A reference to this transformation seen as a Projective3
.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_eq!(proj.as_projective().to_homogeneous(), proj.to_homogeneous());
pub fn to_projective(&self) -> Projective3<N>
[src]
This transformation seen as a Projective3
.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_eq!(proj.to_projective().to_homogeneous(), proj.to_homogeneous());
pub fn into_inner(self) -> Matrix4<N>
[src]
Retrieves the underlying homogeneous matrix.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let expected = Matrix4::new( 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0, 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0, 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9, 0.0, 0.0, 0.0, 1.0 ); assert_eq!(proj.into_inner(), expected);
pub fn unwrap(self) -> Matrix4<N>
[src]
use .into_inner()
instead
Retrieves the underlying homogeneous matrix. Deprecated: Use [Orthographic3::into_inner] instead.
pub fn left(&self) -> N
[src]
The left offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_relative_eq!(proj.left(), 1.0, epsilon = 1.0e-6); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.left(), 10.0, epsilon = 1.0e-6);
pub fn right(&self) -> N
[src]
The right offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_relative_eq!(proj.right(), 10.0, epsilon = 1.0e-6); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.right(), 1.0, epsilon = 1.0e-6);
pub fn bottom(&self) -> N
[src]
The bottom offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_relative_eq!(proj.bottom(), 2.0, epsilon = 1.0e-6); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.bottom(), 20.0, epsilon = 1.0e-6);
pub fn top(&self) -> N
[src]
The top offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_relative_eq!(proj.top(), 20.0, epsilon = 1.0e-6); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.top(), 2.0, epsilon = 1.0e-6);
pub fn znear(&self) -> N
[src]
The near plane offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_relative_eq!(proj.znear(), 0.1, epsilon = 1.0e-6); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.znear(), 1000.0, epsilon = 1.0e-6);
pub fn zfar(&self) -> N
[src]
The far plane offset of the view cuboid.
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); assert_relative_eq!(proj.zfar(), 1000.0, epsilon = 1.0e-6); let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1); assert_relative_eq!(proj.zfar(), 0.1, epsilon = 1.0e-6);
pub fn project_point(&self, p: &Point3<N>) -> Point3<N>
[src]
Projects a point. Faster than matrix multiplication.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let p1 = Point3::new(1.0, 2.0, -0.1); let p2 = Point3::new(1.0, 2.0, -1000.0); let p3 = Point3::new(1.0, 20.0, -0.1); let p4 = Point3::new(1.0, 20.0, -1000.0); let p5 = Point3::new(10.0, 2.0, -0.1); let p6 = Point3::new(10.0, 2.0, -1000.0); let p7 = Point3::new(10.0, 20.0, -0.1); let p8 = Point3::new(10.0, 20.0, -1000.0); assert_relative_eq!(proj.project_point(&p1), Point3::new(-1.0, -1.0, -1.0)); assert_relative_eq!(proj.project_point(&p2), Point3::new(-1.0, -1.0, 1.0)); assert_relative_eq!(proj.project_point(&p3), Point3::new(-1.0, 1.0, -1.0)); assert_relative_eq!(proj.project_point(&p4), Point3::new(-1.0, 1.0, 1.0)); assert_relative_eq!(proj.project_point(&p5), Point3::new( 1.0, -1.0, -1.0)); assert_relative_eq!(proj.project_point(&p6), Point3::new( 1.0, -1.0, 1.0)); assert_relative_eq!(proj.project_point(&p7), Point3::new( 1.0, 1.0, -1.0)); assert_relative_eq!(proj.project_point(&p8), Point3::new( 1.0, 1.0, 1.0));
pub fn unproject_point(&self, p: &Point3<N>) -> Point3<N>
[src]
Un-projects a point. Faster than multiplication by the underlying matrix inverse.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let p1 = Point3::new(-1.0, -1.0, -1.0); let p2 = Point3::new(-1.0, -1.0, 1.0); let p3 = Point3::new(-1.0, 1.0, -1.0); let p4 = Point3::new(-1.0, 1.0, 1.0); let p5 = Point3::new( 1.0, -1.0, -1.0); let p6 = Point3::new( 1.0, -1.0, 1.0); let p7 = Point3::new( 1.0, 1.0, -1.0); let p8 = Point3::new( 1.0, 1.0, 1.0); assert_relative_eq!(proj.unproject_point(&p1), Point3::new(1.0, 2.0, -0.1), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p2), Point3::new(1.0, 2.0, -1000.0), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p3), Point3::new(1.0, 20.0, -0.1), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p4), Point3::new(1.0, 20.0, -1000.0), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p5), Point3::new(10.0, 2.0, -0.1), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p6), Point3::new(10.0, 2.0, -1000.0), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p7), Point3::new(10.0, 20.0, -0.1), epsilon = 1.0e-6); assert_relative_eq!(proj.unproject_point(&p8), Point3::new(10.0, 20.0, -1000.0), epsilon = 1.0e-6);
pub fn project_vector<SB>(&self, p: &Vector<N, U3, SB>) -> Vector3<N> where
SB: Storage<N, U3>,
[src]
SB: Storage<N, U3>,
Projects a vector. Faster than matrix multiplication.
Vectors are not affected by the translation part of the projection.
Example
let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); let v1 = Vector3::x(); let v2 = Vector3::y(); let v3 = Vector3::z(); assert_relative_eq!(proj.project_vector(&v1), Vector3::x() * 2.0 / 9.0); assert_relative_eq!(proj.project_vector(&v2), Vector3::y() * 2.0 / 18.0); assert_relative_eq!(proj.project_vector(&v3), Vector3::z() * -2.0 / 999.9);
pub fn set_left(&mut self, left: N)
[src]
Sets the left offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_left(2.0); assert_relative_eq!(proj.left(), 2.0, epsilon = 1.0e-6); // It is OK to set a left offset greater than the current right offset. proj.set_left(20.0); assert_relative_eq!(proj.left(), 20.0, epsilon = 1.0e-6);
pub fn set_right(&mut self, right: N)
[src]
Sets the right offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_right(15.0); assert_relative_eq!(proj.right(), 15.0, epsilon = 1.0e-6); // It is OK to set a right offset smaller than the current left offset. proj.set_right(-3.0); assert_relative_eq!(proj.right(), -3.0, epsilon = 1.0e-6);
pub fn set_bottom(&mut self, bottom: N)
[src]
Sets the bottom offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_bottom(8.0); assert_relative_eq!(proj.bottom(), 8.0, epsilon = 1.0e-6); // It is OK to set a bottom offset greater than the current top offset. proj.set_bottom(50.0); assert_relative_eq!(proj.bottom(), 50.0, epsilon = 1.0e-6);
pub fn set_top(&mut self, top: N)
[src]
Sets the top offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_top(15.0); assert_relative_eq!(proj.top(), 15.0, epsilon = 1.0e-6); // It is OK to set a top offset smaller than the current bottom offset. proj.set_top(-3.0); assert_relative_eq!(proj.top(), -3.0, epsilon = 1.0e-6);
pub fn set_znear(&mut self, znear: N)
[src]
Sets the near plane offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_znear(8.0); assert_relative_eq!(proj.znear(), 8.0, epsilon = 1.0e-6); // It is OK to set a znear greater than the current zfar. proj.set_znear(5000.0); assert_relative_eq!(proj.znear(), 5000.0, epsilon = 1.0e-6);
pub fn set_zfar(&mut self, zfar: N)
[src]
Sets the far plane offset of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_zfar(15.0); assert_relative_eq!(proj.zfar(), 15.0, epsilon = 1.0e-6); // It is OK to set a zfar smaller than the current znear. proj.set_zfar(-3.0); assert_relative_eq!(proj.zfar(), -3.0, epsilon = 1.0e-6);
pub fn set_left_and_right(&mut self, left: N, right: N)
[src]
Sets the view cuboid offsets along the x
axis.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_left_and_right(7.0, 70.0); assert_relative_eq!(proj.left(), 7.0, epsilon = 1.0e-6); assert_relative_eq!(proj.right(), 70.0, epsilon = 1.0e-6); // It is also OK to have `left > right`. proj.set_left_and_right(70.0, 7.0); assert_relative_eq!(proj.left(), 70.0, epsilon = 1.0e-6); assert_relative_eq!(proj.right(), 7.0, epsilon = 1.0e-6);
pub fn set_bottom_and_top(&mut self, bottom: N, top: N)
[src]
Sets the view cuboid offsets along the y
axis.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_bottom_and_top(7.0, 70.0); assert_relative_eq!(proj.bottom(), 7.0, epsilon = 1.0e-6); assert_relative_eq!(proj.top(), 70.0, epsilon = 1.0e-6); // It is also OK to have `bottom > top`. proj.set_bottom_and_top(70.0, 7.0); assert_relative_eq!(proj.bottom(), 70.0, epsilon = 1.0e-6); assert_relative_eq!(proj.top(), 7.0, epsilon = 1.0e-6);
pub fn set_znear_and_zfar(&mut self, znear: N, zfar: N)
[src]
Sets the near and far plane offsets of the view cuboid.
let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0); proj.set_znear_and_zfar(50.0, 5000.0); assert_relative_eq!(proj.znear(), 50.0, epsilon = 1.0e-6); assert_relative_eq!(proj.zfar(), 5000.0, epsilon = 1.0e-6); // It is also OK to have `znear > zfar`. proj.set_znear_and_zfar(5000.0, 0.5); assert_relative_eq!(proj.znear(), 5000.0, epsilon = 1.0e-6); assert_relative_eq!(proj.zfar(), 0.5, epsilon = 1.0e-6);
Trait Implementations
impl<N: RealField> Clone for Orthographic3<N>
[src]
fn clone(&self) -> Self
[src]
fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl<N: RealField> PartialEq<Orthographic3<N>> for Orthographic3<N>
[src]
impl<N: RealField> From<Orthographic3<N>> for Matrix4<N>
[src]
fn from(orth: Orthographic3<N>) -> Self
[src]
impl<N: RealField> Copy for Orthographic3<N>
[src]
impl<N: RealField> Debug for Orthographic3<N>
[src]
impl<N: RealField> Distribution<Orthographic3<N>> for Standard where
Standard: Distribution<N>,
[src]
Standard: Distribution<N>,
Auto Trait Implementations
impl<N> Send for Orthographic3<N> where
N: Scalar,
N: Scalar,
impl<N> Unpin for Orthographic3<N> where
N: Scalar + Unpin,
N: Scalar + Unpin,
impl<N> Sync for Orthographic3<N> where
N: Scalar,
N: Scalar,
impl<N> UnwindSafe for Orthographic3<N> where
N: Scalar + UnwindSafe,
N: Scalar + UnwindSafe,
impl<N> RefUnwindSafe for Orthographic3<N> where
N: RefUnwindSafe + Scalar,
N: RefUnwindSafe + Scalar,
Blanket Implementations
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T
[src]
fn clone_into(&self, target: &mut T)
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> From<T> for T
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Same<T> for T
[src]
type Output = T
Should always be Self
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]
SS: SubsetOf<SP>,