|
|
|
#include "Pather.h"
|
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Pather::Pather(Map* map_) {
|
|
|
|
map = map_;
|
|
|
|
}
|
|
|
|
|
|
|
|
Pather::~Pather() {
|
|
|
|
}
|
|
|
|
|
|
|
|
sf::Vector2i Pather::getEndNodePosition() {
|
|
|
|
return end_node->getPosition();
|
|
|
|
}
|
|
|
|
|
|
|
|
node* Pather::getActiveNode() {
|
|
|
|
return active_node;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::deque<int> Pather::getPathTo(sf::Vector2i start, sf::Vector2i end) {
|
|
|
|
|
|
|
|
// Clear the visited map of erroneous data
|
|
|
|
for (int i = 0; i < Map::CELLS_WIDTH; i++) {
|
|
|
|
for (int l = 0; l < Map::CELLS_HEIGHT; l++) {
|
|
|
|
visited_map(i, l) = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Place the start and end nodes
|
|
|
|
start_node = new node(start, 7000, 0, nullptr, this);
|
|
|
|
end_node = new node(end, 0, 0, nullptr, this);
|
|
|
|
|
|
|
|
// Set the entry point, clean up any stray data from last run
|
|
|
|
active_node = start_node;
|
|
|
|
open_list.clear();
|
|
|
|
closed_list.clear();
|
|
|
|
|
|
|
|
// Seed for the loop, hueristic is intentionally high
|
|
|
|
open_list.emplace(start_node, start_node->getHueristic());
|
|
|
|
|
|
|
|
// Set up the early exit, and enter into the loop
|
|
|
|
early_exit = false;
|
|
|
|
path_list = loop();
|
|
|
|
|
|
|
|
return path_list;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
std::deque<int> Pather::loop() {
|
|
|
|
|
|
|
|
while (!open_list.empty() && !early_exit) {
|
|
|
|
|
|
|
|
if (closed_list.size() > 1000) { // Quits when the path gets to be over 1000 long, janky
|
|
|
|
no_path = true; // Signal no path was found
|
|
|
|
early_exit = true; // Break
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check to see if we're at our destination, break if we are
|
|
|
|
if (active_node->getPosition().x == end_node->getPosition().x && active_node->getPosition().y == end_node->getPosition().y) {
|
|
|
|
early_exit = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we didn't get held up before, do a round of a*
|
|
|
|
else {
|
|
|
|
|
|
|
|
// Find the pair with the lowest hueristic
|
|
|
|
std::pair<node*, double> bestMin(start_node, 10000); // Get a clean value for the comparison
|
|
|
|
|
|
|
|
// Compare all the values in openList for the one with the smallest hueristic
|
|
|
|
// O(n) complexity so it can get verrrrryyyy slow
|
|
|
|
for (auto testMin: open_list) {
|
|
|
|
if (bestMin.second >= testMin.second)
|
|
|
|
bestMin = testMin;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set the new active node to the lowest hueristic that we found earlier
|
|
|
|
active_node = bestMin.first;
|
|
|
|
|
|
|
|
// Find the neighbors for that node
|
|
|
|
active_node->getNewNeighbors();
|
|
|
|
|
|
|
|
// Remove the active node from the openlist as you have visited it and called its neighbors
|
|
|
|
open_list.erase(active_node);
|
|
|
|
|
|
|
|
// Check to see if the node has already been added to the closed list, if not, add it
|
|
|
|
if (closed_list.count(active_node) == 0) {
|
|
|
|
closed_list.emplace(active_node, active_node->getHueristic());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// When we're done, get the return path
|
|
|
|
std::deque<int> return_path = returnPath();
|
|
|
|
if (no_path || return_path.empty()) { // If we had an error, display it
|
|
|
|
return std::deque<int>();
|
|
|
|
std::cout << " no return path " << std::endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
return return_path;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::deque<int> Pather::returnPath() {
|
|
|
|
// Deque that will be returned
|
|
|
|
std::deque<int> path;
|
|
|
|
|
|
|
|
// Backtrack through the active_nodes, adding their cameFrom value to the deque
|
|
|
|
while (active_node->getParent() != nullptr) {
|
|
|
|
path.push_back(active_node->getCameFrom());
|
|
|
|
|
|
|
|
node* parent = active_node->getParent();
|
|
|
|
delete active_node;
|
|
|
|
active_node = parent;
|
|
|
|
}
|
|
|
|
|
|
|
|
return path;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|